Direkt zum Inhalt
Merck
  • Influence of Land Use, Nutrients, and Geography on Microbial Communities and Fecal Indicator Abundance at Lake Michigan Beaches.

Influence of Land Use, Nutrients, and Geography on Microbial Communities and Fecal Indicator Abundance at Lake Michigan Beaches.

Applied and environmental microbiology (2015-05-17)
Danielle D Cloutier, Elizabeth W Alm, Sandra L McLellan
ZUSAMMENFASSUNG

Microbial communities within beach sand play a key role in nutrient cycling and are important to the nearshore ecosystem function. Escherichia coli and enterococci, two common indicators of fecal pollution, have been shown to persist in the beach sand, but little is known about how microbial community assemblages are related to these fecal indicator bacteria (FIB) reservoirs. We examined eight beaches across a geographic gradient and range of land use types and characterized the indigenous community structure in the water and the backshore, berm, and submerged sands. FIB were found at similar levels in sand at beaches adjacent to urban, forested, and agricultural land and in both the berm and backshore. However, there were striking differences in the berm and backshore microbial communities, even within the same beach, reflecting the very different environmental conditions in these beach zones in which FIB can survive. In contrast, the microbial communities in a particular beach zone were similar among beaches, including at beaches on opposite shores of Lake Michigan. The differences in the microbial communities that did exist within a beach zone correlated to nutrient levels, which varied among geographic locations. Total organic carbon and total phosphorus were higher in Wisconsin beach sand than in beach sand from Michigan. Within predominate genera, fine-scale sequence differences could be found that distinguished the populations from the two states, suggesting a biogeographic effect. This work demonstrates that microbial communities are reflective of environmental conditions at freshwater beaches and are able to provide useful information regarding long-term anthropogenic stress.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Acetaldehyd, natural, FG
Sigma-Aldrich
Acetaldehyd, ACS reagent, ≥99.5%
Sigma-Aldrich
Kieselsäureanhydrid, powder
Sigma-Aldrich
Kieselsäureanhydrid, powder, 0.2-0.3 μm avg. part. size (aggregate)
Sigma-Aldrich
Siliciumdioxid, nanopowder, 10-20 nm particle size (BET), 99.5% trace metals basis
Sigma-Aldrich
LUDOX® HS-40 kolloidales Siliziumdioxid, 40 wt. % suspension in H2O
Supelco
Siliziumdioxid, 99.8%
Sigma-Aldrich
LUDOX® AS-40 kolloidales Siliziumdioxid, 40 wt. % suspension in H2O
Sigma-Aldrich
Silicium(IV)-oxid, nanoparticles, mesoporous, 200 nm particle size, pore size 4 nm
Sigma-Aldrich
Siliciumdioxid, nanopowder (spherical, porous), 5-20 nm particle size (TEM), 99.5% trace metals basis
Sigma-Aldrich
LUDOX® TM-50 kolloidales Siliziumdioxid, 50 wt. % suspension in H2O
Sigma-Aldrich
Siliziumdioxid, granular, ≥99.9%
Supelco
Glaskugeln
Sigma-Aldrich
Silicium(IV)-oxid, nanopowder, 99.8% trace metals basis
Sigma-Aldrich
Siliziumdioxid, −325 mesh, 99.5% trace metals basis
Sigma-Aldrich
Acetaldehyd -Lösung, 50 wt. % in ethanol
Sigma-Aldrich
Quartz, ≥99.995% trace metals basis
Sigma-Aldrich
Siliziumdioxid, mesostrukturiert, MCM-41 type (hexagonal)
Sigma-Aldrich
Silicium(IV)-oxid
Sigma-Aldrich
1-Naphthylphosphat Mononatriumsalz Monohydrat, ≥98% (titration), powder
Sigma-Aldrich
LUDOX® SM kolloidales Siliziumdioxid, 30 wt. % suspension in H2O
Sigma-Aldrich
Acetaldehyd -Lösung, 40 wt. % in H2O
Sigma-Aldrich
LUDOX® AM kolloidales Siliziumdioxid, 30 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® TM-40 kolloidales Siliziumdioxid, 40 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® HS-30 kolloidales Siliziumdioxid, 30 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® TMA kolloidales Siliziumdioxid, 34 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® AS-30 kolloidales Siliziumdioxid, 30 wt. % suspension in H2O
Sigma-Aldrich
Siliziumdioxid, fused (granular), 4-20 mesh, 99.9% trace metals basis
Sigma-Aldrich
Aktivkohle, suitable for cell culture, suitable for plant cell culture
Sigma-Aldrich
LUDOX® LS kolloidales Siliziumdioxid, 30 wt. % suspension in H2O