- Serotonin-mediated modulation of hypoxia-induced intracellular calcium responses in glomus cells isolated from rat carotid body.
Serotonin-mediated modulation of hypoxia-induced intracellular calcium responses in glomus cells isolated from rat carotid body.
In the present study, we examined serotonin (5-HT)-induced intracellular Ca(2+) ([Ca(2+)]i) responses to hypoxia in glomus cells isolated from carotid body (CB) of the rat. 5-HT did not induce any [Ca(2+)]i responses in clustered glomus cells during normoxia (21% O2), whereas, the perfusion of hypoxic solution (1% O2) induced repetitive increases in [Ca(2+)]i in the same specimens. The frequency and magnitude of hypoxia-induced [Ca(2+)]i changes observed in the glomus cells were enhanced in the presence of 5-HT, and this response was inhibited by the 5-HT2 receptor antagonist, ketanserin. Furthermore, RT-PCR analysis detected the expression of 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1F, 5-HT2A, 5-HT2B, 5-HT3A, and 5-HT3B receptor mRNAs in extracts of the CB. These results suggest that 5-HT increases hypoxia-induced [Ca(2+)]i responses in glomus cells. 5-HT may elevate hypoxic responses in glomus cells in order to increase chemosensory activity of the CB.