Direkt zum Inhalt
Merck
  • Serotonin (5-HT) regulates neurite outgrowth through 5-HT1A and 5-HT7 receptors in cultured hippocampal neurons.

Serotonin (5-HT) regulates neurite outgrowth through 5-HT1A and 5-HT7 receptors in cultured hippocampal neurons.

Journal of neuroscience research (2014-04-23)
Paulina S Rojas, David Neira, Mauricio Muñoz, Sergio Lavandero, Jenny L Fiedler
ZUSAMMENFASSUNG

Serotonin (5-HT) production and expression of 5-HT receptors (5-HTRs) occur early during prenatal development. Recent evidence suggests that, in addition to its classical role as a neurotransmitter, 5-HT regulates neuronal connectivity during mammalian development by modulating cell migration and neuronal cytoarchitecture. Given the variety of 5-HTRs, researchers have had difficulty clarifying the specific role of each receptor subtype in brain development. Signalling mediated by the G-protein-coupled 5-HT1A R and 5-HT7 R, however, has been associated with neuronal plasticity. Thus, we hypothesized that 5-HT promotes neurite outgrowth through 5-HT1A R and 5-HT7 R. The involvement of 5-HT1A R and 5-HT7 R in the morphology of rat hippocampal neurons was evaluated by treating primary cultures at 2 days in vitro with 5-HT and specific antagonists for 5-HT1A R and 5-HT7 R (WAY-100635 and SB269970, respectively). The stimulation of hippocampal neurons with 100 nM 5-HT for 24 hr produced no effect on either the number or the length of primary neurites. Nonetheless, after 5HT7 R was blocked, the addition of 5-HT increased the number of primary neurites, suggesting that 5HT7 R could inhibit neuritogenesis. In contrast, 5-HT induced secondary neurite outgrowth, an effect inhibited by 1 μM WAY-100635 or SB269970. These results suggest that both serotonergic receptors participate in secondary neurite outgrowth. We conclude that 5-HT1A R and 5-HT7 R regulate neuronal morphology in primary hippocampal cultures by promoting secondary neurite outgrowth.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Natriumchlorid, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Natriumchlorid -Lösung, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Natriumchlorid -Lösung, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Natriumchlorid, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Natriumpyruvat, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99%
SAFC
Natriumchlorid -Lösung, 5 M
Sigma-Aldrich
Natriumchlorid -Lösung, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Natriumchlorid, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Natriumchlorid, 99.999% trace metals basis
Sigma-Aldrich
Natriumpyruvat, Hybri-Max, powder, suitable for hybridoma
Sigma-Aldrich
Natriumpyruvat, powder, BioXtra, suitable for mouse embryo cell culture
Sigma-Aldrich
Natriumchlorid, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Natriumpyruvat, ReagentPlus®, ≥99%
Sigma-Aldrich
Natriumchlorid, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Natriumchlorid, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Natriumchlorid -Lösung, 5 M
Sigma-Aldrich
Natriumchlorid, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Natriumchlorid-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Natriumchlorid, random crystals, optical grade, 99.9% trace metals basis
Supelco
Natriumchlorid, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Natriumchlorid -Lösung, 0.85%
Supelco
Natriumchlorid, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Natriumpyruvat, BioXtra, ≥99%
Sigma-Aldrich
Natriumchlorid, tested according to Ph. Eur.
Sigma-Aldrich
Natriumchlorid, tablet
Sigma-Aldrich
Natriumpyruvat, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99%