Direkt zum Inhalt
Merck
  • Lipidomics for clinical diagnosis: Dye-Assisted Laser Desorption/Ionization (DALDI) method for lipids detection in MALDI mass spectrometry imaging.

Lipidomics for clinical diagnosis: Dye-Assisted Laser Desorption/Ionization (DALDI) method for lipids detection in MALDI mass spectrometry imaging.

Omics : a journal of integrative biology (2014-06-07)
Karim Arafah, Rémi Longuespée, Annie Desmons, Olivier Kerdraon, Isabelle Fournier, Michel Salzet
ZUSAMMENFASSUNG

Lipid-based biomarkers for research and diagnosis are rapidly emerging to unpack the basis of person-to-person and population variations in disease susceptibility, drug and nutritional responses, to name but a few. Hence, with the advent of MALDI Mass Spectrometry Imaging, lipids have begun to be investigated intensively. However, lipids are highly mobile during tissue preparation, and are soluble in the solvent used for matrix preparation or in the fixing fluid such as formalin, resulting in substantial delocalization. In the present article, we investigated as another alternative, the possibility of using specific dyes that can absorb UV wavelengths, in order to desorb the lipids specifically from tissue sections, and are known to immobilize them in tissues. Indeed, after lipid insolubilization with chromate solution or chemical fixation with osmium tetroxide, heterocyclic-based dyes can be directly used without matrix. Taking into account the fact that some dyes have this matrix-free capability, we identified particular dyes dedicated to histological staining of lipids that could be used with MALDI mass spectrometry imaging. We stained tissue sections with either Sudan Black B, Nile Blue A, or Oil Red O. An important advantage of this assay relies on its compatibility with usual practices of histopathological investigation of lipids. As a new method, DALDI stands for Dye-Assisted Laser Desorption Ionization and allows for future clinical and histopathological applications using routine histological protocols. Additionally, this novel methodology was validated in human ovarian cancer biopsies to demonstrate its use as a suitable procedure, for histological diagnosis in lipidomics field.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, for molecular biology
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, ACS reagent, ≥99.5%
Sigma-Aldrich
Ethyl alcohol, Pure, 200 proof, meets USP testing specifications
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, for molecular biology
Sigma-Aldrich
Osmiumtetroxid, ReagentPlus®, 99.8%
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 4.8% isopropanol, A15 IPA1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Osmiumtetroxid -Lösung, 4 wt. % in H2O
Sigma-Aldrich
Osmiumtetroxid -Lösung, suitable for electron microscopy, 4% in H2O
Sigma-Aldrich
Osmiumtetroxid -Lösung, 2.5 wt. % in tert-butanol
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Ethanol, purum, fine spirit, denaturated with 4.8% methanol, F25 METHYL1, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Osmiumtetroxid, ACS reagent, ≥98.0%
Supelco
Ethanol -Lösung, certified reference material, 2000 μg/mL in methanol
Sigma-Aldrich
Osmiumtetroxid -Lösung, suitable for electron microscopy, 2% in H2O
Sigma-Aldrich
Ethanol, purum, absolute ethanol, denaturated with 2% 2-butanone, A15 MEK1, ≥99.8% (based on denaturant-free substance)
Sigma-Aldrich
Ethanol, BioUltra, for molecular biology, ≥99.8%, (absolute alcohol, without additive, A15 o1)
USP
Dehydrated Alcohol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Os EnCat® 40, extent of labeling: 0.3 mmol/g Os loading
Sigma-Aldrich
Osmiumtetroxid, Sealed ampule.
Supelco
Ethanol, wasserfrei, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Ethanol, for residue analysis
Sigma-Aldrich
Ethanol, tested according to Ph. Eur.