- The advantage of antibody cocktails for targeted alpha therapy depends on specific activity.
The advantage of antibody cocktails for targeted alpha therapy depends on specific activity.
Nonuniform dose distributions among disseminated tumor cells can be a significant limiting factor in targeted α therapy. This study examines how cocktails of radiolabeled antibodies can be formulated to overcome this limitation. Cultured MDA-MB-231 human breast cancer cells were treated with different concentrations of a cocktail of 4 fluorochrome-conjugated monoclonal antibodies. The amount of each antibody bound to each cell was quantified using flow cytometry. A spreadsheet was developed to "arm" the antibodies with any desired radionuclide and specific activity, calculate the absorbed dose to each cell, and perform a Monte Carlo simulation of the surviving fraction of cells after exposure to cocktails of different antibody combinations. Simulations were performed for the α-particle emitters (211)At, (213)Bi, and (225)Ac. Activity delivered to the least labeled cell can be increased by 200%-400% with antibody cocktails, relative to the best-performing single antibody. Specific activity determined whether a cocktail or a single antibody achieved greater cell killing. With certain specific activities, cocktails outperformed single antibodies by a factor of up to 244. There was a profound difference (≤16 logs) in the surviving fraction when a uniform antibody distribution was assumed and compared with the experimentally observed nonuniform distribution. These findings suggest that targeted α therapy can be improved with customized radiolabeled antibody cocktails. Depending on the antibody combination and specific activity of the radiolabeled antibodies, cocktails can provide a substantial advantage in tumor cell killing. The methodology used in this analysis provides a foundation for pretreatment prediction of tumor cell survival in the context of personalized cancer therapy.