- Methods for synthesis of nonabromodiphenyl ethers and a chloro-nonabromodiphenyl ether.
Methods for synthesis of nonabromodiphenyl ethers and a chloro-nonabromodiphenyl ether.
Polybrominated diphenyl ethers (PBDEs) have been used extensively as brominated flame retardants (BFRs) in textiles, upholstery and electronics. They are ubiquitous contaminants in wildlife and humans. A low concentration of nonabrominated diphenyl ethers (nonaBDEs) is present in commercial DecaBDE and they are also abiotic and biotic debromination products of decabromodiphenyl ether (BDE-209). The objective of the present work was to develop methods for synthesis of the three nonaBDEs, 2,2',3,3',4,4',5,5',6-nonabromodiphenyl ether (BDE-206), 2,2',3,3',4,4',5,6,6'-nonabromodiphenyl ether (BDE-207) and 2,2',3,3',4,5,5',6,6'-nonabromodiphenyl ether (BDE-208), with the intention of making them available as authentic standards for analytical, toxicological and stability studies, as well as studies regarding physical-chemical properties. Two methods were developed, one based on perbromination of phenoxyanilines and the other via reductive debromination of BDE-209 by sodium borohydride followed by chromatographic separation of the three nonaBDE isomers formed. An additional nonabrominated compound, 4'-chloro-2,2',3,3',4,5,5',6,6'-nonabromodiphenyl ether (Cl-BDE-208), was also synthesized in the present work. Cl-BDE-208, prepared by the perbromination of 4-chlorodiphenyl ether, may be used as an internal standard in analysis of highly brominated diphenyl ethers. BDE-206, BDE-207, BDE-208 and Cl-BDE-208 were characterized by 1H NMR, 13C NMR, electron ionization mass spectra and by their melting points. The structures of all three nonaBDEs have been characterized previously by X-ray crystallography.