Direkt zum Inhalt
Merck

Physiological plasticity of Dictyota kunthii (Phaeophyceae) to copper excess.

Aquatic toxicology (Amsterdam, Netherlands) (2014-04-08)
C Sordet, L Contreras-Porcia, C Lovazzano, S Goulitquer, S Andrade, P Potin, J A Correa
ZUSAMMENFASSUNG

The brown alga Dictyota kunthii is one of the dominant species in the coastal areas of northern Chile affected by copper enrichment due to accumulated mining wastes. To assess its physiological plasticity in handling copper-mediated oxidative stress, 4-days copper exposure (ca. 100 μg/L) experiments were conducted with individuals from a copper impacted area and compared with the responses of plants from a non-impacted site. Several biochemical parameters were then evaluated and compared between populations. Results showed that individuals from the copper-impacted population normally displayed higher levels of copper content and antioxidant enzymes activity (catalase (CAT), ascorbate peroxidase (AP), dehydroascorbate reductase (DHAR), glutathione peroxidase (GP) and peroxiredoxins (PRX)). After copper exposure, antioxidant enzyme activity increased significantly in plants from the two selected sites. In addition, we found that copper-mediated oxidative stress was associated with a reduction of glutathione reductase (GR) activity. Moreover, metabolic profiling of extracellular metabolites from both populations showed a significant change after plants were exposed to copper excess in comparison with controls, strongly suggesting a copper-induced release of metabolites. The copper-binding capacity of those exudates was determined by anodic stripping voltammetry (ASV) and revealed an increased ligand capacity of the medium with plants exposed to copper excess. Results indicated that D. kunthii, regardless their origin, counteracts copper excess by various mechanisms, including metal accumulation, activation of CAT, AP, DHAR, GP and PRX, and an induced release of Cu binding compounds. Thus, plasticity in copper tolerance in D. kunthii seems constitutive, and the occurrence of a copper-tolerant ecotype seems unlikely.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
(Hydroxypropyl)methylcellulose, viscosity 2,600-5,600 cP, 2 % in H2O(20 °C)(lit.)
Sigma-Aldrich
Kupfer, powder, 99.999% trace metals basis
Sigma-Aldrich
Kupfer, foil, thickness 0.25 mm, 99.98% trace metals basis
Sigma-Aldrich
Kupfer, powder, <425 μm, 99.5% trace metals basis
Sigma-Aldrich
(Hydroxypropyl)methylcellulose
Sigma-Aldrich
(Hydroxypropyl)methylcellulose, average Mn ~10,000
Sigma-Aldrich
Kupfer, wire, diam. 1.0 mm, ≥99.9%
Sigma-Aldrich
(Hydroxypropyl)methylcellulose, viscosity 40-60 cP, 2 % in H2O(20 °C)(lit.)
Sigma-Aldrich
(Hydroxypropyl)methylcellulose, viscosity 80-120 cP, 2 % in H2O(20 °C)(lit.)
Sigma-Aldrich
(Hydroxypropyl)methylcellulose, average Mn ~120,000
Sigma-Aldrich
Kupfer, powder, <75 μm, 99%
Sigma-Aldrich
Kupfer, nanopowder, 40-60 nm particle size (SAXS), ≥99.5% trace metals basis
Sigma-Aldrich
Kupfer, powder (spheroidal), 10-25 μm, 98%
Sigma-Aldrich
Kupfer, wire, diam. 0.25 mm, 99.999% trace metals basis
Sigma-Aldrich
Kupfer, nanopowder, 60-80 nm particle size (SAXS), ≥99.5% trace metals basis
Sigma-Aldrich
Kupfer, foil, thickness 0.025 mm, 99.98% trace metals basis
Sigma-Aldrich
Kupfer, powder (dendritic), <45 μm, 99.7% trace metals basis
Sigma-Aldrich
Kupfer, foil, ≥99.8% (complexometric)
Sigma-Aldrich
Kupfer, turnings, purum p.a., ≥99.0%
Sigma-Aldrich
(Hydroxypropyl)methylcellulose, average Mn ~86,000
Sigma-Aldrich
(Hydroxypropyl)methylcellulose, average Mn ~90,000
Sigma-Aldrich
Hypromellose, meets USP testing specifications
Sigma-Aldrich
Kupfer, wire, diam. 0.64 mm, 99.995% trace metals basis
Sigma-Aldrich
Kupfer, foil, thickness 0.5 mm, 99.98% trace metals basis
USP
Hypromellose, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Kupfer, shot, −3-+14 mesh, 99%
Sigma-Aldrich
Kupfer, beads, 2-8 mm, 99.9995% trace metals basis
Sigma-Aldrich
Kupfer, foil, thickness 1.0 mm, 99.999% trace metals basis
Kupfer, rod, 100mm, diameter 9.5mm, hard, 99.9%
Kupfer, mesh, 100x100mm, nominal aperture 0.14mm, thickness 0.25mm, wire diameter 0.115mm, 100x100 wires/inch, open area 30.3%, plain weave mesh