Direkt zum Inhalt
Merck
  • Influence of Carbopol 71G-NF on the release of dextromethorphan hydrobromide from extended-release matrix tablets.

Influence of Carbopol 71G-NF on the release of dextromethorphan hydrobromide from extended-release matrix tablets.

Pharmaceutical development and technology (2011-06-07)
Mohamed H Fayed, Gamal M Mahrous, Mohamed A Ibrahim, Adel Sakr
ZUSAMMENFASSUNG

The objective of this study was to evaluate the potential of Carbopol(®) 71G-NF on the release of dextromethorphan hydrobromide (DM) from matrix tablets in comparison with hydroxypropyl methylcellulose (HPMC(®) K15M) and Eudragit(®) L100-55 polymers. Controlled release DM matrix tablets were prepared using Carbopol 71G-NF, HPMC K15M, and Eudragit L100-55 at different drug to polymer ratios by direct compression technique. The mechanical properties of the tablets as tested by crushing strength and friability tests were improved as the concentration of Carbopol, HPMC, and Eudragit increased. However, Carbopol-based tablets showed a significantly (P<0.05) higher crushing strength and a lower friability than HPMC and Eudragit tablets. No significant differences in weight uniformity and thickness values were observed between the different formulations. It was also found that Carbopol significantly (P<0.05) delayed the release of DM in comparison with HPMC K15M and Eudragit L100-55. A combination of HPMC K15M and Eudragit L100-55 in a 1:1 ratio at 20 and 30% significantly (P<0.05) delayed the release of DM than Eudragit L100-55 alone. Moreover, blends of Carbopol and HPMC at a 1:1 ratio at the 10, 20, and 30% total polymer concentration were investigated. The blend of Carbopol and HPMC at 10% level significantly (P<0.05) slowed the release of DM than Carbopol or HPMC alone, whereas blends at 20 and 30% level significantly (P<0.05) delayed the release of DM compared with HPMC or Carbopol alone. The results with these polymer blends showed that it was possible to reduce the total amount of polymers when used as a combination in formulation.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Methylzellulose, viscosity: 4,000 cP
Sigma-Aldrich
(Hydroxypropyl)methylcellulose, viscosity 2,600-5,600 cP, 2 % in H2O(20 °C)(lit.)
Sigma-Aldrich
Methylzellulose, viscosity: 15 cP, BioReagent, suitable for cell culture
Sigma-Aldrich
Methylzellulose, viscosity: 1,500 cP
Sigma-Aldrich
(Hydroxypropyl)methylcellulose
Sigma-Aldrich
(Hydroxypropyl)methylcellulose, average Mn ~10,000
Sigma-Aldrich
Methylzellulose, viscosity: 15 cP
Sigma-Aldrich
(Hydroxypropyl)methylcellulose, viscosity 40-60 cP, 2 % in H2O(20 °C)(lit.)
Sigma-Aldrich
(Hydroxypropyl)methylcellulose, viscosity 80-120 cP, 2 % in H2O(20 °C)(lit.)
Sigma-Aldrich
(Hydroxypropyl)methylcellulose, average Mn ~86,000
Sigma-Aldrich
Methylzellulose, viscosity: 25 cP
Sigma-Aldrich
(Hydroxypropyl)methylcellulose, average Mn ~120,000
Sigma-Aldrich
Dextromethorphan -hydrobromid Monohydrat, ≥99% (TLC)
Supelco
Dextromethorphan -Lösung, 1.0 mg/mL in methanol, ampule of 1 mL, certified reference material, Cerilliant®
Sigma-Aldrich
(Hydroxypropyl)methylcellulose, average Mn ~90,000
Sigma-Aldrich
Methocel® A15 LV, 27.5-31.5% methoxyl basis
Sigma-Aldrich
Hypromellose, meets USP testing specifications
Sigma-Aldrich
Methylzellulose, 27.5-31.5% (Methoxyl content), viscosity: 400 cP
Supelco
Dextromethorphan HBr, certified reference material, pharmaceutical secondary standard
Sigma-Aldrich
Methocel® A4M, viscosity 3000-5500 mPa.s, 2 % in H2O(20 °C)
Sigma-Aldrich
Methocel® MC, medium viscosity, Methoxyl content 27.5-31.5 %
Sigma-Aldrich
Methylzellulose, meets USP testing specifications, 26.0-33.0% (methoxyl group, on Dry Basis), viscosity: 400 cP
Sigma-Aldrich
Dextromethorphan -hydrobromid, meets USP testing specifications
Sigma-Aldrich
Methylzellulose, 26.0-33.0% (Methoxy group (dry basis)), meets USP testing specifications, viscosity: 1,500 cP
Dextromethorphan -hydrobromid, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Methylzellulose, tested according to Ph. Eur.