Direkt zum Inhalt
Merck
  • Histamine potentiates N-methyl-D-aspartate receptors by interacting with an allosteric site distinct from the polyamine binding site.

Histamine potentiates N-methyl-D-aspartate receptors by interacting with an allosteric site distinct from the polyamine binding site.

The Journal of pharmacology and experimental therapeutics (2009-12-17)
A Burban, R Faucard, V Armand, C Bayard, V Vorobjev, J-M Arrang
ZUSAMMENFASSUNG

Histamine potentiates activation of native and recombinant N-methyl-d-aspartate receptors (NMDARs), but its mechanisms of action and physiological functions in the brain remain controversial. Using four different models, we have further investigated the histamine-induced potentiation of various NMDAR-mediated responses. In single cultured hippocampal neurons, histamine potentiated NMDA currents. It also potentiated the NMDA-induced increase in intracellular calcium in the absence, as well as with saturating concentrations, of exogenous d-serine, indicating both glycine-dependent and glycine-independent components of its effect. In rat hippocampal synaptosomes, histamine strongly potentiated NMDA-induced [(3)H]noradrenaline release. The profile of this response contained several signatures of the histamine-mediated effect at neuronal or recombinant NMDARs. It was NR2B-selective, being sensitive to micromolar concentrations of ifenprodil. It was reproduced by tele-methylhistamine, the metabolite of histamine in brain, and it was antagonized by impromidine, an antagonist/inverse agonist of histamine on NMDA currents. Up to now, histamine was generally considered to interact with the polyamine site of the NMDAR. However, spermine did not enhance NMDA-induced [(3)H]noradrenaline release from synaptosomes, and the potentiation of the same response by tele-methylhistamine was not antagonized by the polyamine antagonist arcaine. In hippocampal membranes, like spermine, tele-methylhistamine enhanced [(3)H]dl-(E)-2-amino-4-propyl-5-phosphono-3-pentenoic acid (CGP39653) binding to the glutamate site. In contrast, spermine increased nonequilibrium [(3)H]5H-dibenzo[a,d]cyclohepten-5,10-imine (dizocilpine maleate; MK-801) binding, and suppressed [(3)H]ifenprodil binding, whereas histamine and tele-methylhistamine had no effect. In conclusion, the histamine-induced potentiation of NMDARs occurs in the brain under normal conditions. Histamine does not bind to the polyamine site, but to a distinct entity, the so-called histamine site of the NMDAR.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
1-Methylhistamin -dihydrochlorid, ≥98% (TLC), powder