Direkt zum Inhalt
Merck
  • Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen.

Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen.

Cell stem cell (2013-01-16)
Uri Ben-David, Qing-Fen Gan, Tamar Golan-Lev, Payal Arora, Ofra Yanuka, Yifat S Oren, Alicia Leikin-Frenkel, Martin Graf, Ralph Garippa, Markus Boehringer, Gianni Gromo, Nissim Benvenisty
ZUSAMMENFASSUNG

The use of human pluripotent stem cells (hPSCs) in cell therapy is hindered by the tumorigenic risk from residual undifferentiated cells. Here we performed a high-throughput screen of over 52,000 small molecules and identified 15 pluripotent cell-specific inhibitors (PluriSIns), nine of which share a common structural moiety. The PluriSIns selectively eliminated hPSCs while sparing a large array of progenitor and differentiated cells. Cellular and molecular analyses demonstrated that the most selective compound, PluriSIn #1, induces ER stress, protein synthesis attenuation, and apoptosis in hPSCs. Close examination identified this molecule as an inhibitor of stearoyl-coA desaturase (SCD1), the key enzyme in oleic acid biosynthesis, revealing a unique role for lipid metabolism in hPSCs. PluriSIn #1 was also cytotoxic to mouse blastocysts, indicating that the dependence on oleate is inherent to the pluripotent state. Finally, application of PluriSIn #1 prevented teratoma formation from tumorigenic undifferentiated cells. These findings should increase the safety of hPSC-based treatments.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
A939572, ≥98% (HPLC)