Direkt zum Inhalt
Merck

FOXO1 promotes cancer cell growth through MDM2-mediated p53 degradation.

The Journal of biological chemistry (2024-03-23)
Haruki Tomiyasu, Makoto Habara, Shunsuke Hanaki, Yuki Sato, Yosei Miki, Midori Shimada
ZUSAMMENFASSUNG

FOXO1 is a transcription factor and potential tumor suppressor that is negatively regulated downstream of PI3K-PKB/AKT signaling. Paradoxically, FOXO also promotes tumor growth, but the detailed mechanisms behind this role of FOXO are not fully understood. In this study, we revealed a molecular cascade by which the Thr24 residue of FOXO1 is phosphorylated by AKT and is dephosphorylated by calcineurin, which is a Ca2+-dependent protein phosphatase. Curiously, single nucleotide somatic mutations of FOXO1 in cancer occur frequently at and near Thr24. Using a calcineurin inhibitor and shRNA directed against calcineurin, we revealed that calcineurin-mediated dephosphorylation of Thr24 regulates FOXO1 protein stability. We also found that FOXO1 binds to the promoter region of MDM2 and activates transcription, which in turn promotes MDM2-mediated ubiquitination and degradation of p53. FOXO3a and FOXO4 are shown to control p53 activity; however, the significance of FOXO1 in p53 regulation remains largely unknown. Supporting this notion, FOXO1 depletion increased p53 and p21 protein levels in association with the inhibition of cell proliferation. Taken together, these results indicate that FOXO1 is stabilized by calcineurin-mediated dephosphorylation and that FOXO1 supports cancer cell proliferation by promoting MDM2 transcription and subsequent p53 degradation.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Millipore
ANTI-FLAG® M2-Affinitätsgel, purified immunoglobulin, buffered aqueous glycerol solution
Sigma-Aldrich
Calcineurin-Inhibitor VIII, CN585, The Calcineurin Inhibitor VIII, CN585, also referenced under CAS 1213234-31-1, controls the biological activity of Calcineurin. This small molecule/inhibitor is primarily used for Phosphorylation & Dephosphorylation applications.