Direkt zum Inhalt
Merck
  • Differential Effects of Beta-Hydroxybutyrate Enantiomers on Induced Pluripotent Stem Derived Cardiac Myocyte Electrophysiology.

Differential Effects of Beta-Hydroxybutyrate Enantiomers on Induced Pluripotent Stem Derived Cardiac Myocyte Electrophysiology.

Biomolecules (2022-10-28)
Matthew L Klos, Wanqing Hou, Bernard Nsengimana, Shiwang Weng, Chuyun Yan, Suowen Xu, Eric Devaney, Shuxin Han
ZUSAMMENFASSUNG

Beta-hydroxybutyrate (βOHB), along with acetoacetate and acetone, are liver-produced ketone bodies that are increased after fasting or prolonged exercise as an alternative fuel source to glucose. βOHB, as the main circulating ketone body, is not only a G-protein coupled receptor ligand but also a histone deacetylases inhibitor, prompting the reexamination of its role in health and disease. In this study, we compared the effects of two commercial βOHB formulations an enantiomer R βOHB and a racemic mixture ±βOHB on induced pluripotent stem cell cardiac myocytes (iPS-CMs) electrophysiology. Cardiac myocytes were cultured in R βOHB or ±βOHB for at least ten days after lactate selection. Flouvolt or Fluo-4 was used to assay iPS-CMs electrophysiology. We found that while both formulations increased the optical potential amplitude, R βOHB prolonged the action potential duration but ±βOHB shortened the action potential duration. Moreover, ±βOHB increased the peak calcium transient but R βOHB reduced the peak calcium transient. Co-culturing with glucose or fatty acids did not ameliorate the effects, suggesting that βOHB was more than a fuel source. The effect of βOHB on iPS-CMs electrophysiology is most likely stereoselective, and care must be taken to evaluate the role of exogenous βOHB in health and disease.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Anti-α-Actinin (Sarcomeric) antibody, Mouse monoclonal, clone EA-53, purified from hybridoma cell culture
Sigma-Aldrich
Anti-Troponin T (Cardiac Muscle) Antibody, clone 9C2.1, clone 9C2.1, from mouse