Direkt zum Inhalt
Merck
  • The influence of H/D kinetic isotope effect on radiation-induced transformations of hydroxyl-containing compounds in aqueous solutions.

The influence of H/D kinetic isotope effect on radiation-induced transformations of hydroxyl-containing compounds in aqueous solutions.

Free radical research (2020-10-20)
Palina S Nepachalovich, Oleg I Shadyro, Andrei V Bekish, Vadim V Shmanai
ZUSAMMENFASSUNG

Vicinal diols and its derivatives can be exploited as model compounds for the investigation of radiation-induced free-radical transformations of hydroxyl-containing biomolecules such as carbohydrates, phospholipids, ribonucleotides, amino acids, and peptides. In this paper, for the first time, the prospects of isotope reinforcement approach in inhibiting free-radical transformations of hydroxyl-containing compounds in aqueous solutions are investigated on the example of radiolysis of 1,2-propanediol and 1,2-propanediol-2-d1 aqueous solutions. At an absorbed dose rate of 0.110 ± 0.003 Gy·s-1 a profound kinetic isotope effect (KIE) is observed for the non-branched chain formation of acetone, which is a final dehydration product of predominant carbon-centred radicals CH3·C(OH)CH2OH. In 0.1 and 1 M deaerated solutions at pH 7.00 ± 0.01, the values of KIE are 8.9 ± 1.7 and 15.3 ± 3.1, respectively. A rationale for the fact that a strong KIE takes place only in the case of chain processes, which may occur during free-radical transformations of vicinal diols, is also provided herein based on the results of 2-propanol and 2-propanol-2-d1 indirect radiolysis. Lastly, the lack of KIE is shown in the case of 2-butanone formation from 2,3-butanediol or 2,3-butanediol-2,3-d2. This indicates that the type (primary, secondary) of the β-carbonyl radicals formed as a result of CH3·C(OH)CH(OH)R (R = H, CH3) dehydration determines the manifestation of the effect.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Propionaldehyd, natural, ≥98%, FG