Direkt zum Inhalt
Merck
  • Identification of Quinone Degradation as a Triggering Event for Intense Pulsed Light-Elicited Metabolic Changes in Escherichia coli by Metabolomic Fingerprinting.

Identification of Quinone Degradation as a Triggering Event for Intense Pulsed Light-Elicited Metabolic Changes in Escherichia coli by Metabolomic Fingerprinting.

Metabolites (2021-02-14)
Qingqing Mao, Juer Liu, Justin R Wiertzema, Dongjie Chen, Paul Chen, David J Baumler, Roger Ruan, Chi Chen
ZUSAMMENFASSUNG

Intense pulsed light (IPL) is becoming a new technical platform for disinfecting food against pathogenic bacteria. Metabolic changes are deemed to occur in bacteria as either the causes or the consequences of IPL-elicited bactericidal and bacteriostatic effects. However, little is known about the influences of IPL on bacterial metabolome. In this study, the IPL treatment was applied to E. coli K-12 for 0-20 s, leading to time- and dose-dependent reductions in colony-forming units (CFU) and morphological changes. Both membrane lipids and cytoplasmic metabolites of the control and IPL-treated E. coli were examined by the liquid chromatography-mass spectrometry (LC-MS)-based metabolomic fingerprinting. The results from multivariate modeling and marker identification indicate that the metabolites in electron transport chain (ETC), redox response, glycolysis, amino acid, and nucleotide metabolism were selectively affected by the IPL treatments. The time courses and scales of these metabolic changes, together with the biochemical connections among them, revealed a cascade of events that might be initiated by the degradation of quinone electron carriers and then followed by oxidative stress, disruption of intermediary metabolism, nucleotide degradation, and morphological changes. Therefore, the degradations of membrane quinones, especially the rapid depletion of menaquinone-8 (MK-8), can be considered as a triggering event in the IPL-elicited metabolic changes in E. coli.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Tripentadecanoin, ≥99%