Direkt zum Inhalt
Merck
  • Mesenchymal Stem Cell-Derived Exosomes Carry MicroRNA-125a to Protect Against Diabetic Nephropathy by Targeting Histone Deacetylase 1 and Downregulating Endothelin-1.

Mesenchymal Stem Cell-Derived Exosomes Carry MicroRNA-125a to Protect Against Diabetic Nephropathy by Targeting Histone Deacetylase 1 and Downregulating Endothelin-1.

Diabetes, metabolic syndrome and obesity : targets and therapy (2021-04-02)
Yan Hao, Jie Miao, Wenjia Liu, Kangqin Cai, Xianli Huang, Li Peng
ZUSAMMENFASSUNG

Mesenchymal stem cell (MSC)-derived exosomes have seen great advances in human disease control in a minimally invasive manner. This research aimed to explore the function of MSC-derived exosomes in diabetic nephropathy (DN) progression and the molecules involved. A rat model with DN and rat glomerular mesangial cell (GMC) models treated with high glucose (HG) were established, which were treated with exosomes from adipose-derived-MSCs (adMSCs). The levels of blood glucose, serum creatinine, and urinary protein, the urine albumin-to-creatinine ratio (UACR), kidney weight/body weight, and mesangial hyperplasia and kidney fibrosis in rats were determined. The expression of interleukin-6 (IL-6), collagen I (Col. I), fibronectin (FN), Bax and Bcl-2 in HG-treated GMCs was assessed. The microRNA (miRNA) carried by adMSC-exosomes was identified, and the implicated down-stream molecules were analyzed. adMSC-derived exosomes decreased levels of blood glucose, serum creatinine, 24-h urinary protein, UACR and kidney weight/body weight, and they suppressed mesangial hyperplasia and kidney fibrosis in DN rats. The exosomes also suppressed levels of IL6, Col. I and FN in HG-treated GMCs and promoted cell apoptosis. miR-125a was at least partially responsible for the above protective events mediated by adMSC-exosomes. miR-125a directly bound to histone deacetylase 1 (HDAC1), while HDAC1 further regulated endothelin-1 (ET-1) activation. Up-regulation of HDAC1 blocked the functions of adMSC-exosomal miR-125a. This study suggested that adMSC-derived exosomes inhibit DN progression and alleviate the symptoms by carrying miR-125a, during which HDAC1 and ET-1 were inhibited. This study may provide novel effects into DN treatment.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
MISSION® esiRNA, targeting human EDN1