Direkt zum Inhalt
Merck
  • Evidence for shear-mediated Ca2+ entry through mechanosensitive cation channels in human platelets and a megakaryocytic cell line.

Evidence for shear-mediated Ca2+ entry through mechanosensitive cation channels in human platelets and a megakaryocytic cell line.

The Journal of biological chemistry (2017-04-19)
Zeki Ilkan, Joy R Wright, Alison H Goodall, Jonathan M Gibbins, Chris I Jones, Martyn P Mahaut-Smith
ZUSAMMENFASSUNG

The role of mechanosensitive (MS) Ca2+-permeable ion channels in platelets is unclear, despite the importance of shear stress in platelet function and life-threatening thrombus formation. We therefore sought to investigate the expression and functional relevance of MS channels in human platelets. The effect of shear stress on Ca2+ entry in human platelets and Meg-01 megakaryocytic cells loaded with Fluo-3 was examined by confocal microscopy. Cells were attached to glass coverslips within flow chambers that allowed applications of physiological and pathological shear stress. Arterial shear (1002.6 s-1) induced a sustained increase in [Ca2+] i in Meg-01 cells and enhanced the frequency of repetitive Ca2+ transients by 80% in platelets. These Ca2+ increases were abrogated by the MS channel inhibitor Grammostola spatulata mechanotoxin 4 (GsMTx-4) or by chelation of extracellular Ca2+ Thrombus formation was studied on collagen-coated surfaces using DiOC6-stained platelets. In addition, [Ca2+] i and functional responses of washed platelet suspensions were studied with Fura-2 and light transmission aggregometry, respectively. Thrombus size was reduced 50% by GsMTx-4, independently of P2X1 receptors. In contrast, GsMTx-4 had no effect on collagen-induced aggregation or on Ca2+ influx via TRPC6 or Orai1 channels and caused only a minor inhibition of P2X1-dependent Ca2+ entry. The Piezo1 agonist, Yoda1, potentiated shear-dependent platelet Ca2+ transients by 170%. Piezo1 mRNA transcripts and protein were detected with quantitative RT-PCR and Western blotting, respectively, in both platelets and Meg-01 cells. We conclude that platelets and Meg-01 cells express the MS cation channel Piezo1, which may contribute to Ca2+ entry and thrombus formation under arterial shear.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Anti-α-Tubulin Mouse mAb (DM1A), liquid, clone DM1A, Calbiochem®