Direkt zum Inhalt
Merck

In vivo significance of ITK-SLP-76 interaction in cytokine production.

Molecular and cellular biology (2010-05-12)
Juris A Grasis, David M Guimond, Nicholas R Cam, Krystal Herman, Paola Magotti, John D Lambris, Constantine D Tsoukas
ZUSAMMENFASSUNG

In vitro data have suggested that activation of the inducible T-cell kinase (ITK) requires an interaction with the adaptor protein SLP-76. One means for this interaction involves binding of the ITK SH3 domain to the polyproline-rich (PR) region of SLP-76. However, the biological significance of this association in live cells and the consequences of its disruption have not been demonstrated. Here, we utilized a polyarginine-rich, cell-permeable peptide that represents the portion of the SLP-76 PR region that interacts with the ITK SH3 domain as a competitive inhibitor to disrupt the association between ITK and SLP-76 in live cells. We demonstrate that treatment of cells with this peptide, by either in vitro incubation or intraperitoneal injection of the peptide in mice, inhibits the T-cell receptor (TCR)-induced association between ITK and SLP-76, recruitment and transphosphorylation of ITK, actin polarization at the T-cell contact site, and expression of Th2 cytokines. The inhibition is specific, as indicated by lack of effects by the polyarginine vehicle alone or a scrambled sequence of the cargo peptide. In view of the role of ITK as a regulator of Th2 cytokine expression, the data underscore the significance of ITK as a target for pharmacological intervention.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Anti-Phosphotyrosin-Antikörper, Klon 4G10®, clone 4G10®, Upstate®, from mouse
Sigma-Aldrich
Mouse IgG2a Isotype Control from murine myeloma, clone UPC-10, purified immunoglobulin, buffered aqueous solution