Direkt zum Inhalt
Merck
  • Marine Microorganisms for Biocatalysis: Selective Hydrolysis of Nitriles with a Salt-Resistant Strain of Meyerozyma guilliermondii.

Marine Microorganisms for Biocatalysis: Selective Hydrolysis of Nitriles with a Salt-Resistant Strain of Meyerozyma guilliermondii.

Marine biotechnology (New York, N.Y.) (2019-01-27)
Immacolata Serra, Claudia Capusoni, Francesco Molinari, Loana Musso, Luisa Pellegrino, Concetta Compagno
ZUSAMMENFASSUNG

A screening among marine yeasts was carried out for nitrile hydrolyzing activity. Meyerozyma guilliermondii LM2 (UBOCC-A-214008) was able to efficiently grow on benzonitrile and cyclohexanecarbonitrile (CECN) as sole nitrogen sources. A two-step one-pot method for obtaining cells of M. guilliermondii LM2 (UBOCC-A-214008) endowed with high nitrilase activity was established; the resulting whole cells converted different nitriles with high molar conversions and showed interesting enantioselectivity toward racemic substrates. Nitrilase from M. guilliermondii LM2 (UBOCC-A-214008) displayed high activity on aromatic substrates, but also arylaliphatic and aliphatic substrates were accepted. Salt-resistant M. guilliermondii LM2 (UBOCC-A-214008) was used in media with different salinity, being highly active up to 1.5 M NaCl concentration. Finally, hydrolysis of nitriles was efficiently performed using a bioprocess (yeast growth and biotransformation with resting cells) entirely carried out in seawater.