- Importance of exocyclic base functional groups of central core guanosines for hammerhead ribozyme activity.
Importance of exocyclic base functional groups of central core guanosines for hammerhead ribozyme activity.
The three guanosines of the central core of a hammerhead ribozyme were replaced by 2-aminopurine ribonucleoside, xanthosine, isoguanosine, inosine, and deoxyguanosine. These analogues were incorporated by automated solid-phase synthesis, with the exception of isoguanosine. This was introduced by ligating a donor, which carried the isoguanosine at its 5'-end, and an acceptor oligoribonucleotide by a T4 DNA ligase-catalyzed reaction. Most of these modifications lowered the rate constant of cleavage by the hammerhead ribozyme drastically. Inspection of the possible hydrogen-bonding interactions disturbed by these modifications suggests that there is no G12A9 or A13G8 mismatched base pair in the central region. Increasing the Mg2+ concentration from 10 to 50 mM did not enhance these rates appreciably. This makes it improbable that the guanosines, including their 2'-hydroxyl groups, are involved in the binding of the catalytically active Mg2+. Transition-state destabilizing energies of 0.6-4.7 kcal mol-1 suggest that essentially all guanosines are involved in a hydrogen-bonding network.