- The removal of kaolinite suspensions by acid-soluble and water-soluble chitosans.
The removal of kaolinite suspensions by acid-soluble and water-soluble chitosans.
Chitosan is a potential substitute for traditional aluminium salts in water treatment systems. This research compared the coagulant performance of acid-soluble chitosan with water-soluble chitosan and with coagulant mixtures of chitosan and aluminium sulfate (alum). We also assessed the coagulant performance of chitosan and poly-aluminium chloride (PAC) to remove kaolinite from turbid water. In addition, we evaluated their respective coagulation efficiencies under different coagulant concentrations, degrees of turbidity (NTU) and pH levels. Furthermore, we determined the size and settling velocity of flocs formed by these coagulants in order to illustrate major factors affecting kaolinite coagulation. The optimal concentrations of acid- versus water- soluble chitosan required to remove kaolinite from a 300 NTU suspension were 4.0 and 10.0 mg/l, respectively-with individual efficiencies of 79.3 and 92.4%, in that order. Optimum concentrations ofwater-soluble chitosan demonstrated a broader range than that of acid-soluble chitosan. In addition, it is of note that chitosan/alum and chitosan/PAC water-soluble coagulant mixtures demonstrated much wider ranges of optimal concentrations for turbidity reduction than either alum or PAC alone. Moreover, our water-soluble chitosan coagulant mixtures produced denser floc with elevated settling velocities that favour cost savings relevant to both installation and operational expenses. Based on our observations of these noteworthy performances, we confidently propose that a coagulant mixture with a 1:1 mass ratio of chitosan and alum presents a remarkably more cost-effective alternative to the use of chitosan alone in water treatment systems.