Skip to Content
Merck
  • Transport and signaling via the amino acid binding site of the yeast Gap1 amino acid transceptor.

Transport and signaling via the amino acid binding site of the yeast Gap1 amino acid transceptor.

Nature chemical biology (2008-12-09)
Griet Van Zeebroeck, Beatriz Monge Bonini, Matthias Versele, Johan M Thevelein
ABSTRACT

Transporter-related nutrient sensors, called transceptors, mediate nutrient activation of signaling pathways through the plasma membrane. The mechanism of action of transporting and nontransporting transceptors is unknown. We have screened 319 amino acid analogs to identify compounds that act on Gap1, a transporting amino acid transceptor in yeast that triggers activation of the protein kinase A pathway. We identified competitive and noncompetitive inhibitors of transport, either with or without agonist action for signaling, including nontransported agonists. Using substituted cysteine accessibility method (SCAM) analysis, we identified Ser388 and Val389 as being exposed into the amino acid binding site, and we show that agonist action for signaling uses the same binding site as used for transport. Our results provide the first insight, to our knowledge, into the mechanism of action of transceptors. They indicate that signaling requires a ligand-induced specific conformational change that may be part of but does not require the complete transport cycle.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-Lysine, crystallized, ≥98.0% (NT)
Sigma-Aldrich
Boc-Glu-OH, ≥98.0% (T)
Sigma-Aldrich
L-Tyrosine, BioUltra, ≥99.0% (NT)
Sigma-Aldrich
L-Tyrosine, FG
Sigma-Aldrich
L-Prolinamide, 98%
Sigma-Aldrich
Boc-His-OH, 99%
Sigma-Aldrich
L-Proline, 99%, FCC, FG
Sigma-Aldrich
Boc-Asn-OH, ≥98.5% (T)
Sigma-Aldrich
Boc-Pro-OH, ≥99.0% (T)
Sigma-Aldrich
Gly-Gly, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
Boc-Ser-OH, ≥99.0% (T)
Sigma-Aldrich
L-Leucine methyl ester hydrochloride, 98%
Sigma-Aldrich
Glycinamide hydrochloride, 98%
Sigma-Aldrich
L-Histidine, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
L-Valine methyl ester hydrochloride, 99%
Sigma-Aldrich
Boc-Met-OH, 99%
Sigma-Aldrich
Pipecolinic acid, 98%
Sigma-Aldrich
Leu-Gly
Sigma-Aldrich
L-Tyrosine, from non-animal source, meets EP, USP testing specifications, suitable for cell culture, 99.0-101.0%
Sigma-Aldrich
L-Histidine, suitable for cell culture, meets EP, USP testing specifications, from non-animal source
Sigma-Aldrich
Gly-Gly, BioPerformance Certified, suitable for cell culture, ≥99%
Sigma-Aldrich
L-Aspartic acid, from non-animal source, meets EP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
L-Proline, from non-animal source, meets EP, USP testing specifications, suitable for cell culture
Sigma-Aldrich
L-Aspartic acid, BioXtra, ≥99% (HPLC)
SAFC
L-Aspartic acid
SAFC
L-Histidine
SAFC
L-Tyrosine
SAFC
L-Threonine
SAFC
L-Proline
Sigma-Aldrich
L-Threonine, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 99.0-101.0%