Skip to Content
Merck

Cell death during crisis is mediated by mitotic telomere deprotection.

Nature (2015-06-26)
Makoto T Hayashi, Anthony J Cesare, Teresa Rivera, Jan Karlseder
ABSTRACT

Tumour formation is blocked by two barriers: replicative senescence and crisis. Senescence is triggered by short telomeres and is bypassed by disruption of tumour-suppressive pathways. After senescence bypass, cells undergo crisis, during which almost all of the cells in the population die. Cells that escape crisis harbour unstable genomes and other parameters of transformation. The mechanism of cell death during crisis remains unexplained. Here we show that human cells in crisis undergo spontaneous mitotic arrest, resulting in death during mitosis or in the following cell cycle. This phenotype is induced by loss of p53 function, and is suppressed by telomerase overexpression. Telomere fusions triggered mitotic arrest in p53-compromised non-crisis cells, indicating that such fusions are the underlying cause of cell death. Exacerbation of mitotic telomere deprotection by partial TRF2 (also known as TERF2) knockdown increased the ratio of cells that died during mitotic arrest and sensitized cancer cells to mitotic poisons. We propose a crisis pathway wherein chromosome fusions induce mitotic arrest, resulting in mitotic telomere deprotection and cell death, thereby eliminating precancerous cells from the population.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-γ-Tubulin antibody, Mouse monoclonal, clone GTU-88, ascites fluid
SKU
Pack Size
Availability
Price
Quantity
Sigma-Aldrich
Anti-phospho-Ser/Thr-Pro MPM-2 Antibody, clone MPM-2, Upstate®, from mouse
SKU
Pack Size
Availability
Price
Quantity