Skip to Content
Merck
  • Fe(III) mineral reduction followed by partial dissolution and reactive oxygen species generation during 2,4,6-trinitrotoluene transformation by the aerobic yeast Yarrowia lipolytica.

Fe(III) mineral reduction followed by partial dissolution and reactive oxygen species generation during 2,4,6-trinitrotoluene transformation by the aerobic yeast Yarrowia lipolytica.

AMB Express (2015-04-09)
Ayrat M Ziganshin, Elvira E Ziganshina, James Byrne, Robin Gerlach, Ellen Struve, Timur Biktagirov, Alexander Rodionov, Andreas Kappler
ABSTRACT

Understanding the factors that influence pollutant transformation in the presence of ferric (oxyhydr)oxides is crucial to the efficient application of different remediation strategies. In this study we determined the effect of goethite, hematite, magnetite and ferrihydrite on the transformation of 2,4,6-trinitrotoluene (TNT) by Yarrowia lipolytica AN-L15. The presence of ferric (oxyhydr)oxides led to a small decrease in the rate of TNT removal. In all cases, a significant release of NO2 (-) from TNT and further NO2 (-) oxidation to NO3 (-) was observed. A fraction of the released NO2 (-) was abiotically decomposed to NO and NO2, and then NO was likely oxidized abiotically to NO2 by O2. ESR analysis revealed the generation of superoxide in the culture medium; its further protonation at low pH resulted in the formation of hydroperoxyl radical. Presumably, a fraction of NO released during TNT degradation reacted with superoxide and formed peroxynitrite, which was further rearranged to NO3 (-) at the acidic pH values observed in this study. A transformation and reduction of ferric (oxyhydr)oxides followed by partial dissolution (in the range of 7-86% of the initial Fe(III)) were observed in the presence of cells and TNT. Mössbauer spectroscopy showed some minor changes for goethite, magnetite and ferrihydrite samples during their incubation with Y. lipolytica and TNT. This study shows that i) reactive oxygen and nitrogen species generated during TNT transformation by Y. lipolytica participate in the abiotic conversion of TNT and ii) the presence of iron(III) minerals leads to a minor decrease in TNT transformation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Goethite, 30-63% Fe
Sigma-Aldrich
Hypoxanthine, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Hypoxanthine, ≥99.0%
Sigma-Aldrich
Iron oxide(II,III), magnetic nanoparticles solution, 10 nm avg. part. size, 5 mg/mL in toluene
Sigma-Aldrich
Xanthine, BioUltra, ≥99%
Sigma-Aldrich
Xanthine, ≥99.5% (HPLC), purified by recrystallization
Sigma-Aldrich
Xanthine, ≥99%
Sigma-Aldrich
Iron oxide(II,III), magnetic nanoparticles solution, 5 nm avg. part. size, 5 mg/mL in toluene
Sigma-Aldrich
Iron oxide(II,III), magnetic nanoparticles solution, 20 nm avg. part. size, 5 mg/mL in toluene
Sigma-Aldrich
Iron oxide(II,III), magnetic nanoparticles solution, 10 nm avg. part. size, 5 mg/mL in H2O
Sigma-Aldrich
Iron oxide(II,III), magnetic nanoparticles solution, 5 nm avg. part. size, 5 mg/mL in H2O
Sigma-Aldrich
Iron oxide(II,III), magnetic nanoparticles solution, 20 nm avg. part. size, 5 mg/mL in H2O
Sigma-Aldrich
Iron(II,III) oxide, nanopowder, 50-100 nm particle size (SEM), 97% trace metals basis
Sigma-Aldrich
Iron oxide(II,III), magnetic nanoparticles solution, 10 nm avg. part. size (TEM), carboxylic acid functionalized, 5 mg/mL Fe in H2O, dispersion
Sigma-Aldrich
Iron oxide(II,III), magnetic nanoparticles solution, 10 nm avg. part. size (TEM), PEG functionalized, 1 mg/mL Fe in H2O, dispersion
Sigma-Aldrich
Iron oxide(II,III), magnetic nanoparticles solution, 5 nm avg. part. size (TEM), amine functionalized, 1 mg/mL Fe in H2O, dispersion
Sigma-Aldrich
Iron oxide(II,III), magnetic nanoparticles solution, 30 nm avg. part. size (TEM), amine functionalized, 1 mg/mL Fe in H2O, dispersion
Sigma-Aldrich
Iron oxide(II,III), magnetic nanoparticles solution, 10 nm avg. part. size (TEM), amine functionalized, 1 mg/mL Fe in H2O, dispersion
Sigma-Aldrich
Iron oxide(II,III), magnetic nanoparticles solution, 30 nm avg. part. size (TEM), PEG functionalized, 1 mg/mL Fe in H2O, dispersion
Sigma-Aldrich
Iron(II,III) oxide, 99.99% trace metals basis
Sigma-Aldrich
Iron(II,III) oxide, powder, <5 μm, 95%
Sigma-Aldrich
Iron oxide(II,III), magnetic nanoparticles solution, 5 nm avg. part. size (TEM), PEG functionalized, 1 mg/mL Fe in H2O, dispersion