- Wettability and surface free energy of polarised ceramic biomaterials.
Wettability and surface free energy of polarised ceramic biomaterials.
Biomedical materials (Bristol, England) (2015-01-15)
Miho Nakamura, Naoko Hori, Saki Namba, Takeshi Toyama, Nobuyuki Nishimiya, Kimihiro Yamashita
PMID25585714
ABSTRACT
The surface modification of ceramic biomaterials used for medical devices is expected to improve osteoconductivity through control of the interfaces between the materials and living tissues. Polarisation treatment induced surface charges on hydroxyapatite, β-tricalcium phosphate, carbonate-substituted hydroxyapatite and yttria-stabilized zirconia regardless of the differences in the carrier ions participating in the polarisation. Characterization of the surfaces revealed that the wettability of the polarised ceramic biomaterials was improved through the increase in the surface free energies compared with conventional ceramic surfaces.
MATERIALS
Product Number
Brand
Product Description
Supelco
Phosphate Standard for IC, TraceCERT®, 1000 mg/L phosphate in water (nominal concentration)
Sigma-Aldrich
Sodium carbonate, ACS reagent (primary standard), anhydrous, 99.95-100.05% dry basis
Sigma-Aldrich
Sodium carbonate, anhydrous, free-flowing, Redi-Dri™, ACS reagent (primary standard), 99.95-100.05% dry basis
Sigma-Aldrich
Sodium carbonate, anhydrous, powder or granules, free-flowing, Redi-Dri™, ACS reagent, ≥99.5%
Sigma-Aldrich
Sodium phosphate dibasic, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥99.0%
Sigma-Aldrich
Calcium nitrate tetrahydrate, suitable for cell culture, suitable for plant cell culture
Sigma-Aldrich
Zirconium(IV) oxide, nanoparticles, dispersion, <100 nm particle size (BET), 5 wt. % in H2O
Sigma-Aldrich
Zirconium(IV) oxide, nanoparticles, dispersion, <100 nm particle size (BET), 10 wt. % in H2O