Skip to Content
Merck
  • Synthesis, characterization, and bioactivity of carboxylic acid-functionalized titanium dioxide nanobelts.

Synthesis, characterization, and bioactivity of carboxylic acid-functionalized titanium dioxide nanobelts.

Particle and fibre toxicology (2014-09-03)
Raymond F Hamilton, Nianqiang Wu, Chengcheng Xiang, Ming Li, Feng Yang, Michael Wolfarth, Dale W Porter, Andrij Holian
ABSTRACT

Surface modification strategies to reduce engineered nanomaterial (ENM) bioactivity have been used successfully in carbon nanotubes. This study examined the toxicity and inflammatory potential for two surface modifications (humic acid and carboxylation) on titanium nanobelts (TNB). The in vitro exposure models include C57BL/6 alveolar macrophages (AM) and transformed human THP-1 cells exposed to TNB for 24 hrs in culture. Cell death and NLRP3 inflammasome activation (IL-1β release) were monitored. Short term (4 and 24 hr) in vivo studies in C57BL/6, BALB/c and IL-1R null mice evaluated inflammation and cytokine release, and cytokine release from ex vivo cultured AM. Both in vitro cell models suggest that the humic acid modification does not significantly affect TNB bioactivity, while carboxylation reduced both toxicity and NLRP3 inflammasome activation. In addition, short term in vivo exposures in both C57BL/6 and IL-1R null mouse strains demonstrated decreased markers of inflammation, supporting the in vitro finding that carboxylation is effective in reducing bioactivity. TNB instillations in IL-1R null mice demonstrated the critical role of IL-1β in initiation of TNB-induced lung inflammation. Neutrophils were completely absent in the lungs of IL-1R null mice instilled with TNB for 24 hrs. However, the cytokine content of the IL-1R null mice lung lavage samples indicated that other inflammatory agents, IL-6 and TNF-α were constitutively elevated indicating a potential compensatory inflammatory mechanism in the absence of IL-1 receptors. Taken together, the data suggests that carboxylation, but not humic acid modification of TNB reduces, but does not totally eliminate bioactivity of TNB, which is consistent with previous studies of other long aspect ratio nanomaterials such as carbon nanotubes.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Sodium hydroxide, BioUltra, for luminescence, ≥98.0% (T), pellets
Supelco
Sodium hydroxide solution, 49-51% in water, eluent for IC
Sigma-Aldrich
3-Ethyl-2,4-pentanedione, mixture of tautomers, 98%
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Supelco
Sodium hydroxide concentrate, 0.1 M NaOH in water (0.1N), Eluent concentrate for IC
Sigma-Aldrich
Human IL-33 ELISA Kit, for serum, plasma, cell culture supernatant and urine
Sigma-Aldrich
Sodium hydroxide, anhydrous, free-flowing, Redi-Dri, reagent grade, ≥98%, pellets
Isoflurane, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Sodium hydroxide, ultra dry, powder or crystals, 99.99% trace metals basis
Sigma-Aldrich
Sodium hydroxide, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
Sodium hydroxide, reagent grade, 97%, powder
Sigma-Aldrich
Sodium hydroxide, puriss., meets analytical specification of Ph. Eur., BP, NF, E524, 98-100.5%, pellets
Sigma-Aldrich
Sodium hydroxide, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
Sodium hydroxide, pellets, semiconductor grade, 99.99% trace metals basis
Sigma-Aldrich
Sodium hydroxide, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
Sodium hydroxide solution, 5.0 M
Sigma-Aldrich
Sodium hydroxide, beads, 16-60 mesh, reagent grade, 97%
Sigma-Aldrich
Sodium hydroxide, reagent grade, 97%, flakes
Sigma-Aldrich
Sodium hydroxide solution, 50% in H2O
Sigma-Aldrich
Sodium hydroxide-16O solution, 20 wt. % in H216O, 99.9 atom % 16O
Sigma-Aldrich
Succinic anhydride, ≥99% (GC)
Sigma-Aldrich
Mouse Il33 / Interleukin-33 ELISA Kit