Skip to Content
Merck
  • Fullerene-C60 derivatives prevent UV-irradiation/ TiO2-induced cytotoxicity on keratinocytes and 3D-skin tissues through antioxidant actions.

Fullerene-C60 derivatives prevent UV-irradiation/ TiO2-induced cytotoxicity on keratinocytes and 3D-skin tissues through antioxidant actions.

Journal of nanoscience and nanotechnology (2014-04-17)
Shinya Kato, Hisae Aoshima, Yasukazu Saitoh, Nobuhiko Miwa
ABSTRACT

Microcorpuscular titanium dioxide (TiO2), a useful sunscreen agent, photocatalyzes generation of reactive oxygen species (ROS). We assessed protective effects of fullerene-C60 derivatives or microcolloidal platinum (Pt) against ultraviolet ray (UV)-irradiation in the presence of TiO2 in vitro. UV-irradiation (8 J/cm2, mixed UVA and UVB) in the presence of 15 ppm TiO2 on HaCaT keratinocytes decreased cell viability as quantified by WST-1 assay, and increased both intracellular ROS and cell-membrane-lipid peroxidation, as quantified by nitroblue-tetrazolium (NBT) assay and diphenyl-1-pyrenylphosphine (DPPP) assay, respectively, whereas all of three phototoxicity-related symptoms were appreciably repressed almost to UV-unirradiational levels by pretreatment with polyvinylpyrrolidone-entrapped fullerene-C60 (C60/PVP) or fullerene-C60 dissolved in squalane (C60/Sqn) in a dose-dependent manner of C60, but scarcely by PVP alone or Sqn alone. In contrast, Pt repressed intracellular ROS generation, but did not prevent either peroxidation of cell-membrane-lipid or cell mortality. Then in the epidermis of 3-dimensional human skin tissue model, UV-irradiation in the presence of TiO2 extensively induced two symptoms such as ROS-generation around perinuclear regions and membrane-lipid peroxidation, both of which were repressed by C60/PVP or C60/Sqn, whereas Pt did not prevent membrane-lipid peroxidation adequately. Thus the advantageous application of the lipophilic antioxidant fullerene-C60 which effectively protects cell membrane against peroxidation. In conclusion, fullerene-C60 can be expected to serve as an antioxidant for scavenging of TiO2-photocatalyzed ROS in the skin surface, and therefore provide a functional improvement of TiO2-containing sunscreens.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Titanium, foil, thickness 0.025 mm, 99.98% trace metals basis
Sigma-Aldrich
Titanium, wire, diam. 1.0 mm, 99.99% trace metals basis
Titanium, IRMM®, certified reference material, 0.5 mm wire
Titanium, IRMM®, certified reference material, 0.5 mm foil
Sigma-Aldrich
Titanium(IV) oxide, rutile, 99.995% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, ≥99.98% trace metals basis
Sigma-Aldrich
Titanium, wire, diam. 0.25 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium, 5-10 mm, ≥99.99% trace metals basis (purity exclusive of Na and K content)
Sigma-Aldrich
Titanium(IV) oxide, rutile, powder, <5 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Titanium, foil, thickness 2.0 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium, foil, thickness 0.127 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium, wire, diam. 0.81 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, mixture of rutile and anatase, nanoparticles, <150 nm particle size (volume distribution, DLS), dispersion, 40 wt. % in H2O, 99.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, mixture of rutile and anatase, nanopowder, <100 nm particle size (BET), 99.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, nanopowder, <100 nm particle size, 99.5% trace metals basis
Sigma-Aldrich
Titanium(IV) oxide, rutile, <001>, (single crystal substrate), ≥99.9% trace metals basis, L × W × thickness 10 mm × 10 mm × 0.5 mm
Titanium, microfoil, disks, 10mm, thinness 0.1μm, specific density 42.8μg/cm2, permanent mylar 3.5μm support, 99.6+%
Titanium, rod, 100mm, diameter 10mm, annealed, 99.6+%
Titanium, tube, 1000mm, outside diameter 9.5mm, inside diameter 8.2mm, wall thickness 0.65mm, annealed, 99.6+%
Titanium, microfoil, disks, 10mm, thinness 0.25μm, specific density 112.6μg/cm2, permanent mylar 3.5μm support, 99.6+%
Titanium, tube, 1000mm, outside diameter 12.7mm, inside diameter 10.9mm, wall thickness 0.9mm, annealed, 99.6+%
Titanium, rod, 200mm, diameter 16mm, annealed, 99.6+%
Titanium, rod, 100mm, diameter 16mm, as drawn, 99.99+%
Titanium, rod, 200mm, diameter 2mm, annealed, 99.6+%
Titanium, tube, 200mm, outside diameter 1.6mm, inside diameter 1.2mm, wall thickness 0.2mm, hard, 99.6+%
Titanium, microfoil, disks, 10mm, thinness 1.0μm, specific density 429μg/cm2, permanent mylar 3.5μm support, 99.6+%
Titanium, rod, 100mm, diameter 5mm, annealed, 99.6+%
Titanium, rod, 200mm, diameter 2mm, as drawn, 99.99+%
Titanium, tube, 200mm, outside diameter 6.35mm, inside diameter 5.53mm, wall thickness 0.41mm, annealed, 99.6+%
Titanium, tube, 100mm, outside diameter 6.1mm, inside diameter 5.1mm, wall thickness 0.5mm, annealed, 99.6+%