Skip to Content
Merck
  • Differential responses to docosahexaenoic acid in primary and immortalized cardiac cells.

Differential responses to docosahexaenoic acid in primary and immortalized cardiac cells.

Toxicology letters (2013-03-26)
Rawabi Qadhi, Nasser Alsaleh, Victor Samokhvalov, Haitham El-Sikhry, Jérôme Bellenger, John M Seubert
ABSTRACT

The importance of dietary polyunsaturated fatty acids (PUFAs) in the reduction of cardiovascular disease has been recognized for many years. Docosahexaenoic acid (22:6n3, DHA) is an n-3 PUFA known to affect numerous biological functions and provide cardioprotection; however, the exact molecular and cellular protective mechanism(s) remain unknown. In contrast, DHA also possesses many anti-tumorgenic properties including suppressing cell growth and inducing apoptosis. In the present study, we investigated the effect of DHA toward H9c2 cells (an immortalized cardiac cell line) and neonatal primary cardiomyocytes (NCM). Cells were treated with 0μM, 10μM or 100μM DHA for upto 48h. Cell viability and mitochondrial activity were assayed at different time points. DHA caused a significant time- and dose-dependent decrease in cell viability and mitochondrial activity in H9c2 cells but not NCM. In addition, DHA decreased levels of TGF-β1 but increased IL-6 release in H9c2 cells. Significant induction of apoptosis was observed only in H9c2 cells, which involved activation of caspase-8 and -3 activities with a marked release of cytochrome c from mitochondria. DHA-induced severe mitochondrial damage resulting in a fragmented and punctated morphology with corresponding loss of mitochondrial membrane potential within 3h, prior to activation of caspases and cytochrome c release at 6h in H9c2 cells. Our data indicate that DHA treatment targets mitochondria, triggering collapse of mitochondrial membrane potential, increasing cellular stress and mitochondrial fragmentation resulting in apoptosis in immortalized cardiac cells, H9c2, but not neonatal primary cardiomyocyte.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
ProteoMass Cytochrome c MALDI-MS Standard, vial of 10 nmol, (M+H+) 12,361.96 Da by calculation
Sigma-Aldrich
Cytochrome c from Saccharomyces cerevisiae, ≥85% based on Mol. Wt. 12,588 basis
Sigma-Aldrich
Cytochrome c from equine heart, BioUltra, ≥99% (SDS-PAGE), powder, suitable for mammalian cell culture
Sigma-Aldrich
Cytochrome c from bovine heart, ≥95% based on Mol. Wt. 12,327 basis, powder, suitable for mammalian cell culture
Sigma-Aldrich
Cytochrome c from equine heart, ≥95% based on Mol. Wt. 12,384 basis
Sigma-Aldrich
Cytochrome c from equine heart, ≥95% (SDS-PAGE)
Sigma-Aldrich
Cytochrome c from equine heart, BioReagent, suitable for GFC marker
Sigma-Aldrich
Cytochrome c from bovine heart, ≥95% based on Mol. Wt. 12,327 basis
Sigma-Aldrich
Cytochrome c from pigeon breast muscle, ≥95% based on Mol. Wt. 12,173 basis