- Human aortic endothelial cell labeling with positive contrast gadolinium oxide nanoparticles for cellular magnetic resonance imaging at 7 Tesla.
Human aortic endothelial cell labeling with positive contrast gadolinium oxide nanoparticles for cellular magnetic resonance imaging at 7 Tesla.
Positive T₁ contrast using gadolinium (Gd) contrast agents can potentially improve detection of labeled cells on magnetic resonance imaging (MRI). Recently, gadolinium oxide (Gd₂O₃) nanoparticles have shown promise as a sensitive T₁ agent for cell labeling at clinical field strengths compared to conventional Gd chelates. The objective of this study was to investigate Gado CELLTrack, a commercially available Gd₂O₃ nanoparticle, for cell labeling and MRI at 7 T. Relaxivity measurements yielded r1 = 4.7 s⁻¹ mM⁻¹ and r₂/r₁ = 6.2. Human aortic endothelial cells were labeled with Gd₂O₃ at various concentrations and underwent MRI from 1 to 7 days postlabeling. The magnetic resonance relaxation times T₁ and T₂ of labeled cell pellets were measured. Cellular contrast agent uptake was quantified by inductively coupled plasma-atomic emission spectroscopy, which showed very high uptake compared to conventional Gd compounds. MRI demonstrated significant positive T₁ contrast and stable labeling on cells. Enhancement was optimal at low Gd concentrations, attained in the 0.02 to 0.1 mM incubation concentration range (corresponding cell uptake was 7.26 to 34.1 pg Gd/cell). Cell viability and proliferation were unaffected at the concentrations tested and up to at least 3 days postlabeling. Gd₂O₃ is a promising sensitive and stable positive contrast agent for cellular MRI at 7 T.