Skip to Content
Merck
  • Bioremediation of halogenated compounds: comparison of dehalogenating bacteria and improvement of catalyst stability.

Bioremediation of halogenated compounds: comparison of dehalogenating bacteria and improvement of catalyst stability.

Chemosphere (2006-05-26)
Benjamin Erable, Isabelle Goubet, Sylvain Lamare, Marie-Dominique Legoy, Thierry Maugard
ABSTRACT

Five bacterial strains were compared for halogenated compounds conversion in aqueous media. Depending on the strain, the optimal temperature for dehalogenase activity of resting cells varied from 30 to 45 degrees C, while optimal pH raised from 8.4 to 9.0. The most effective dehalogenase activity for 1-chlorobutane conversion was detected with Rhodococcus erythropolis NCIMB13064 and Escherichia coli BL21 (DE3) (DhaA). The presence of 2-chlorobutane or propanal in the aqueous media could inhibit the 1-chlorobutane transformation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
1-Chlorobutane, anhydrous, 99.5%
Sigma-Aldrich
1-Chlorobutane, biotech. grade, for protein sequence analysis, ≥99.8%
Sigma-Aldrich
1-Chlorobutane, suitable for HPLC, ≥99.8%
Sigma-Aldrich
1-Chlorobutane, ReagentPlus®, 99%