Skip to Content
Merck
  • Evaluation of redox indicators for determining sulfate-reducing and dechlorinating conditions.

Evaluation of redox indicators for determining sulfate-reducing and dechlorinating conditions.

Water research (2005-10-26)
Brian D Jones, James D Ingle
ABSTRACT

An in situ methodology based on covalently bonded redox indicators has been developed for determining when sulfate-reducing conditions exist in environmental samples. Three immobilized redox indicators [thionine (Thi, formal potential at pH 7 (E(0')7) equals 52 mV), cresyl violet (CV, E(0')7 = -81 mV), and phenosafranine (PSaf, E(0')7 = -267 mV)] were tested for their response to sulfide in synthetic solutions and under sulfate-reducing conditions in wastewater slurries. The byproduct of the sulfate-reducing process, sulfide, was found to couple well to CV in the concentration range of 1-100 microM total sulfide ([S(-II)]) and the pH range of 6-8. Thi, the indicator with the highest formal potential, reacts rapidly with sulfide at levels well below 1 microM while PSaf, the indicator with the lowest formal potential, does not couple to sulfide at levels in excess of 100 microM [S(-II)]. The degree of reduction of the indicators (i.e., the fraction of cresyl violet oxidized) in contact with a given level of sulfide can be modeled qualitatively with an equilibrium expression for [S(-II)]-indicator based on the Nernst equation assuming that rhombic sulfur is the product of sulfide oxidation. In a groundwater sample with dechlorinating microbes, reduction of Thi and partial reduction of CV correlated with dechlorination of TCE to cis-DCE.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Phenosafranin, Dye content 80 %