- A comparative summary of expression systems for the recombinant production of galactose oxidase.
A comparative summary of expression systems for the recombinant production of galactose oxidase.
The microbes Escherichia coli and Pichia pastoris are convenient prokaryotic and eukaryotic hosts, respectively, for the recombinant production of proteins at laboratory scales. A comparative study was performed to evaluate a range of constructs and process parameters for the heterologous intra- and extracellular expression of genes encoding the industrially relevant enzyme galactose 6-oxidase (EC 1.1.3.9) from the fungus Fusarium graminearum. In particular, the wild-type galox gene from F. graminearum, an optimized variant for E. coli and a codon-optimized gene for P. pastoris were expressed without the native pro-sequence, but with a His-tag either at the N- or the C-terminus of the enzyme. The intracellular expression of a codon-optimized gene with an N-terminal His10-tag in E. coli, using the pET16b+ vector and BL21DE3 cells, resulted in a volumetric productivity of 180 UĀ·L-1Ā·h-1. The intracellular expression of the wild-type gene from F. graminearum, using the pPIC3.5 vector and the P. pastoris strain GS115, was poor, resulting in a volumetric productivity of 120 UĀ·L-1Ā·h-1. Furthermore, this system did not tolerate an N-terminal His10-tag, thus rendering isolation of the enzyme from the complicated mixture difficult. The highest volumetric productivity (610 UĀ·L-1Ā·h-1) was achieved when the wild-type gene from F. graminearum was expressed extracellularly in the P. pastoris strain SMD1168H using the pPICZĪ±-system. A C-terminal His6-tag did not significantly affect the production of the enzyme, thus enabling simple purification by immobilized metal ion affinity chromatography. Notably, codon-optimisation of the galox gene for expression in P. pastoris did not result in a higher product yield (g proteinĀ·L-1 culture). Effective activation of the enzyme to generate the active-site radical copper complex could be equally well achieved by addition of CuSO4 directly in the culture medium or post-harvest. The results indicate that intracellular production in E. coli and extracellular production in P. pastoris comprise a complementary pair of systems for the production of GalOx. The prokaryotic host is favored for high-throughput screening, for example in the development of improved enzymes, while the yeast system is ideal for production scale-up for enzyme applications.