Skip to Content
Merck
  • GnRH receptor activation competes at a low level with growth signaling in stably transfected human breast cell lines.

GnRH receptor activation competes at a low level with growth signaling in stably transfected human breast cell lines.

BMC cancer (2011-11-05)
Kevin Morgan, Colette Meyer, Nicola Miller, Andrew H Sims, Ilgin Cagnan, Dana Faratian, David J Harrison, Robert P Millar, Simon P Langdon
ABSTRACT

Gonadotrophin releasing hormone (GnRH) analogs lower estrogen levels in pre-menopausal breast cancer patients. GnRH receptor (GnRH-R) activation also directly inhibits the growth of certain cells. The applicability of GnRH anti-proliferation to breast cancer was therefore analyzed. GnRH-R expression in 298 primary breast cancer samples was measured by quantitative immunofluorescence. Levels of functional GnRH-R in breast-derived cell lines were assessed using 125I-ligand binding and stimulation of 3H-inositol phosphate production. Elevated levels of GnRH-R were stably expressed in cells by transfection. Effects of receptor activation on in vitro cell growth were investigated in comparison with IGF-I and EGF receptor inhibition, and correlated with intracellular signaling using western blotting. GnRH-R immunoscoring was highest in hormone receptor (triple) negative and grade 3 breast tumors. However prior to transfection, functional endogenous GnRH-R were undetectable in four commonly studied breast cancer cell lines (MCF-7, ZR-75-1, T47D and MDA-MB-231). After transfection with GnRH-R, high levels of cell surface GnRH-R were detected in SVCT and MDA-MB-231 clones while low-moderate levels of GnRH-R occurred in MCF-7 clones and ZR-75-1 clones. MCF-7 sub-clones with high levels of GnRH-R were isolated following hygromycin phosphotransferase transfection. High level cell surface GnRH-R enabled induction of high levels of 3H-inositol phosphate and modest growth-inhibition in SVCT cells. In contrast, growth of MCF-7, ZR-75-1 or MDA-MB-231 clones was unaffected by GnRH-R activation. Cell growth was inhibited by IGF-I or EGF receptor inhibitors. IGF-I receptor inhibitor lowered levels of p-ERK1/2 in MCF-7 clones. Washout of IGF-I receptor inhibitor resulted in transient hyper-elevation of p-ERK1/2, but co-addition of GnRH-R agonist did not alter the dynamics of ERK1/2 re-phosphorylation. Breast cancers exhibit a range of GnRH-R immunostaining, with higher levels of expression found in triple-negative and grade 3 cancers. However, functional cell surface receptors are rare in cultured cells. Intense GnRH-R signaling in transfected breast cancer cells did not markedly inhibit growth, in contrast to transfected HEK 293 cells indicating the importance of intracellular context. GnRH-R signaling could not counteract IGF-I receptor-tyrosine kinase addiction in MCF-7 cells. These results suggest that combinatorial strategies with growth factor inhibitors will be needed to enhance GnRH anti-proliferative effects in breast cancer.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Propylene glycol, ≥99.5% (GC), FCC, FG
Sigma-Aldrich
Avidin–Alkaline Phosphatase, buffered aqueous solution
Sigma-Aldrich
Propylene Glycol, meets USP testing specifications
Sigma-Aldrich
Phosphatase, Alkaline bovine, recombinant, expressed in Pichia pastoris, ≥4000 units/mg protein
Supelco
Propylene glycol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Protein A−Alkaline Phosphatase, protein A from Staphylococcus aureus
Sigma-Aldrich
ExtrAvidin® –Alkaline Phosphatase, buffered aqueous solution
Sigma-Aldrich
Phosphatase, Alkaline shrimp, ≥900 DEA units/mL, buffered aqueous glycerol solution, recombinant, expressed in proprietary host