Skip to Content
Merck
  • Neutrophil extracellular traps in ischemia-reperfusion injury-induced myocardial no-reflow: therapeutic potential of DNase-based reperfusion strategy.

Neutrophil extracellular traps in ischemia-reperfusion injury-induced myocardial no-reflow: therapeutic potential of DNase-based reperfusion strategy.

American journal of physiology. Heart and circulatory physiology (2014-12-21)
Lan Ge, Xin Zhou, Wen-Jie Ji, Rui-Yi Lu, Yan Zhang, Yi-Dan Zhang, Yong-Qiang Ma, Ji-Hong Zhao, Yu-Ming Li
ABSTRACT

Emerging evidence suggests a potential role of neutrophil extracellular traps (NETs) in linking sterile inflammation and thrombosis. We hypothesized that NETs would be induced during myocardial ischemia-reperfusion (I/R), and NET-mediated microthrombosis may contribute to myocardial "no-reflow". Male Wistar rats were randomly divided into I/R control, DNase (DNase I, 20 μg/rat), recombinant tissue-type plasminogen activator (rt-PA, 420 μg/rat), DNase + rt-PA, and sham control groups after 45-min myocardial ischemia. In situ NET formation, the anatomic "no re-flow" area, and infarct size were evaluated immediately after 3 h of reperfusion. Long-term left ventricular (LV) functional and histological analyses were performed 45 days after operation. Compared with the I/R controls, the DNase + rt-PA group exhibited reduced NET density [8.38 ± 1.98 vs. 26.86 ± 3.07 (per 200 × field), P < 0.001] and "no-flow" area (15.22 ± 0.06 vs. 34.6 ± 0.05%, P < 0.05) in the ischemic region, as well as reduced infarct size (38.39 ± 0.05 vs. 71.00 ± 0.03%, P < 0.001). Additionally, compared with the I/R controls, DNase + rt-PA treatment significantly ameliorated I/R injury-induced LV remodeling (LV ejection fraction: 64.22 ± 3.37 vs. 33.81 ± 2.98%, P < 0.05; LV maximal slope of the LV systolic pressure increment: 3,785 ± 216 vs. 2,596 ± 299 mmHg/s, P < 0.05). The beneficial effect was not observed in rats treated with DNase I or rt-PA alone. Our study provides evidence for the existence of NETs in I/R-challenged myocardium and confirms the long-term benefit of a novel DNase-based reperfusion strategy (DNase I + rt-PA), which might be a promising option for the treatment of myocardial I/R injury and coronary no-reflow.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Guaiacol, natural, ≥99%, FG
Sigma-Aldrich
Guaiacol, oxidation indicator
Supelco
Guaiacol, Pharmaceutical Secondary Standard; Certified Reference Material
Lysine hydrochloride, European Pharmacopoeia (EP) Reference Standard
Millipore
Hydrogen peroxide solution, 3%, suitable for microbiology
Sigma-Aldrich
Hydrogen peroxide solution, contains ~200 ppm acetanilide as stabilizer, 3 wt. % in H2O
USP
Cetrimonium bromide, United States Pharmacopeia (USP) Reference Standard
Guaiacol, European Pharmacopoeia (EP) Reference Standard
Supelco
Hexadecyltrimethylammonium bromide, analytical standard
Supelco
Hexadecyltrimethylammonium bromide, suitable for ion pair chromatography, LiChropur
Sigma-Aldrich
Hexadecyltrimethylammonium bromide, BioUltra, for molecular biology, ≥99.0% (AT)
Supelco
L-Lysine hydrochloride solution, 100 mM amino acid in 0.1 M HCl, analytical standard
Sigma-Aldrich
Hexadecyltrimethylammonium bromide, for molecular biology, ≥99%
Sigma-Aldrich
L-Lysine monohydrochloride, reagent grade, ≥98% (HPLC)
Sigma-Aldrich
Hexadecyltrimethylammonium bromide, ≥98%
Sigma-Aldrich
Hexadecyltrimethylammonium bromide, BioXtra, ≥99%
Sigma-Aldrich
Hexadecyltrimethylammonium bromide, ≥96.0% (AT)
Supelco
L-Lysine monohydrochloride, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
L-Lysine monohydrochloride, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, 98.5-101.0%
Sigma-Aldrich
L-Lysine monohydrochloride, BioUltra, ≥99.5% (AT)
SAFC
Hexadecyltrimethylammonium bromide, USP/NF
Supelco
L-Lysine monohydrochloride, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland