Skip to Content
Merck
  • Naphthenic acid biodegradation by the unicellular alga Dunaliella tertiolecta.

Naphthenic acid biodegradation by the unicellular alga Dunaliella tertiolecta.

Chemosphere (2011-04-05)
Dean M Quesnel, Iyswarya M Bhaskar, Lisa M Gieg, Gordon Chua
ABSTRACT

Naphthenic acids (NAs) are a major contributor to toxicity in tailings waste generated from bitumen production in the Athabasca Oil Sands region. While investigations have shown that bacteria can biodegrade NAs and reduce tailings toxicity, the potential of algae to biodegrade NAs and the biochemical mechanisms involved remain poorly understood. Here, we discovered that the marine alga Dunaliella tertiolecta is able to tolerate five model NAs (cyclohexanecarboxylic acid, cyclohexaneacetic acid, cyclohexanepropionic acid, cyclohexanebutyric acid and 1,2,3,4-tetrahydro-2-naphthoic acid) at 300mgL(-1), a level which exceeds that of any single or combination of NAs typically found in tailings ponds. Moreover, we show that D. tertiolecta can metabolize four of the model NAs. Analysis of NA-amended cultures of D. tertiolecta via low resolution gas chromatography-mass spectrometry allowed us to quantify decreasing NA levels, identify metabolites, and formulate putative mechanisms of biodegradation. Degradation of cyclohexanebutyric acid and cyclohexanepropionic acid proceeded via β-oxidation and resulted in the transient accumulation of cyclohexaneacetic acid and cyclohexanecarboxylic acid, respectively. Cyclohexanecarboxylic acid was metabolized via 1-cyclohexenecarboxylic acid suggesting that further degradation may occur by step-wise β-oxidation. When D. tertiolecta was inoculated in the presence of oil sands tailings water from the Athabasca region, biodegradation of single-ring NAs was observed relative to controls. This result corroborates the trend we observed with the single-ring model NAs.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Cyclohexanebutyric acid, 99%
Sigma-Aldrich
Cyclohexaneacetic acid, ≥99%
Sigma-Aldrich
Cyclohexanecarboxylic acid, 98%