Skip to Content
Merck
All Photos(1)

Key Documents

EHU035971

Sigma-Aldrich

MISSION® esiRNA

targeting human MARCKS

Sign Into View Organizational & Contract Pricing


About This Item

UNSPSC Code:
41105324
NACRES:
NA.51

description

Powered by Eupheria Biotech

product line

MISSION®

form

lyophilized powder

esiRNA cDNA target sequence

CGAACTACACTTGGGCTCCTTTTTTTGTGCTCGACTTTTCCACCCTTTTTCCCTCCCTCCTGTGCTGCTGCTTTTTGATCTCTTCGACTAAAATTTTTTTATCCGGAGTGTATTTAATCGGTTCTGTTCTGTCCTCTCCACCACCCCCACCCCCCTCCCTCCGGTGTGTGTGCCGCTGCCGCTGTTGCCGCCGCCGCTGCTGCTGCTCGCCCCGTCGTTACACCAACCCGAGGCTCTTTGTTTCCCCTCTTGGATCTGTTGAGTTTCTTTGTTGAAGAAGCCAGCATGGGTGCCCAGTTCTCCAAGACCGCAGCGAAGGGAGAAGCCGCCGCGGAGAGGCCTGGGGAGGCGGCTGTGGCCTCGTCGCCTTCCAAAGCGAACGGACAGGAGAATGGCCACGTGAAGGTAAA

Ensembl | human accession no.

NCBI accession no.

shipped in

ambient

storage temp.

−20°C

Gene Information

General description

MISSION® esiRNA are endoribonuclease prepared siRNA. They are a heterogeneous mixture of siRNA that all target the same mRNA sequence. These multiple silencing triggers lead to highly-specific and effective gene silencing.

For additional details as well as to view all available esiRNA options, please visit SigmaAldrich.com/esiRNA.

Legal Information

MISSION is a registered trademark of Merck KGaA, Darmstadt, Germany

Storage Class Code

10 - Combustible liquids

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Cuong Van Dao et al.
The Journal of veterinary medical science, 79(12), 1931-1938 (2017-10-20)
Methylmercury (MeHg) is an environmental pollutant that shows severe toxicity to humans and animals. However, the molecular mechanisms mediating MeHg toxicity are not completely understood. We have previously reported that the MARCKS protein is involved in the MeHg toxicity to
Jun Li et al.
Journal of Cancer, 10(11), 2480-2487 (2019-07-02)
Objective: Recently, accumulating evidence has indicated that the 3' untranslated regions (3'UTRs) of protein coding genes play critical roles in the progression of various cancers, including ovarian cancer. This study is aimed to identify the potential role of SNAI2-3'UTR in
Ching-Hsien Chen et al.
Oncotarget, 6(17), 15194-15208 (2015-05-28)
Accumulating evidence has suggested that myristoylated alanine-rich C-kinase substrate (MARCKS) is critical for regulating multiple pathophysiological processes. However, the molecular mechanism underlying increased phosphorylation of MARCKS at Ser159/163 (phospho-MARCKS) and its functional consequence in neoplastic disease remain to be established.
C-H Chen et al.
Oncogene, 33(28), 3696-3706 (2013-08-21)
Myristoylated Alanine-Rich C Kinase Substrate (MARCKS), a substrate of protein kinase C, is a key regulatory molecule controlling mucus granule secretion by airway epithelial cells as well as directed migration of leukocytes, stem cells and fibroblasts. Phosphorylation of MARKCS may
Dan Yu et al.
Journal of the American Heart Association, 4(10), e002255-e002255 (2015-10-10)
Transcription of the myristoylated alanine-rich C kinase substrate (MARCKS) is upregulated in animal models of intimal hyperplasia. MARCKS knockdown inhibits vascular smooth muscle cell (VSMC) migration in vitro; however, the mechanism is as yet unknown. We sought to elucidate the

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service