Saltar al contenido
Merck

Dextran Sulfate

Structure

Dextran sulfates are supplied as the sodium salt forms, making them soluble and stable in water. Dextran sulfate contains approximately 17% sulfur which is equivalent to approximately 2.3 sulfate groups per glucosyl residue.

Dextran is a polymer of anhydroglucose. It is composed of approximately 95% alpha-D-(166) linkages. The remaining (163) linkages account for the branching of dextran.1,2,3 Conflicting data on the branch lengths implies that the average branch length is less than three glucose units.4,5 However, other methods indicate branches of greater than 50 glucose units exist.6,7

Lower molecular weight (MW) dextrans will exhibit slightly less branching4 and have a more narrow range of MW distribution.8

In low ionic strength solutions the dextran sulfate polymer will be fully extended due to repulsion of the negatively charged sulfate groups.9 In high ionic strength solutions the polymer shrinks and more closely resembles unionized dextran.9 pH changes over the titrable range of the sulfate group will cause expansion and contraction.The MW of dextran sulfate is measured by one or more of the following methods: low angle laser light scattering10, size exclusion chromatography11, and viscosity12.

Product Information

Our dextrans are derived from Leuconostoc mesenteroides, strain B 512. Various MW are produced by limited hydrolysis and fractionation. Esterification with sulfuric acid is carried out under mild conditions. Our supplier's exact methods are held proprietary. Fractionation of dextran can be accomplished by size exclusion chromatography11 or ethanol fractionation in which the largest MW dextrans precipitate first.17

Storage/Stability

If stored properly at room temperature dextran sulfate powders should be stable for a minimum of two to three years.

Solubility/Solution Stability

We test the solubility of dextran sulfates at 100 mg/mL in water. Clear solutions are obtained. Buffered aqueous dextran sulfate solutions can be sterilized by autoclaving at 110-115 °C for 30 to 45 minutes.8 Dextran can be hydrolyzed by strong acids at high temperatures. Dextran sulfate has a higher affinity for calcium ions than for sodium ions. The calcium salt of dextran sulfate is insoluble. The free acid (hydrogen) form of dextran sulfate is extremely acidic and autohydrolyzes rapidly in solution and as a powder.8

Applications

Lipoprotein Separation

Dextran sulfate is routinely used to selectively precipitate lipoproteins.

In the presence of 0.05% dextran sulfate (MW 15,000) and 0.05M MnCl2, VLDL and LDL precipitate. Increasing the final concentrations to 0.65% dextran sulfate and 0.2M MnCl2 results in subsequent precipitation of HDL.14

Dextran sulfate (MW 500,000) has been used similarly in the determination of HDL cholesterol.15

Hybridization

The inclusion of dextran sulfate at a final concentration of 10% has been shown to accelerate the hybridization of labeled probes with membrane-immobilized DNA.16 We offer dextran sulfate (MW 500,000) molecular biology grade (Product No. D8906) for this application.

Other Nucleic Acid Related Applications

Dextran sulfate has been shown to release DNA from DNA-histone complexes.17  Dextran sulfate inhibits the binding of RNA to ribosomes.18,19  It is also a potent ribonuclease inhibitor20 and has been used in the isolation of ribosomes.21

Miscellaneous Applications

Dextran sulfate has been used with polyethylene glycol in aqueous biphasic polymer separations for bacteria, virus, proteins, and nucleic acids.22

The effects on cell proliferation have been studied.23

It has been shown to form insoluble complexes with fibrinogen.24

Dextran sulfate has been found to bind to virus and inhibit initial adsorption to susceptible cells.25

Related Products
Loading

References

1.
Rankin JC, Jeanes A. 1954. Evaluation of the Periodate Oxidation Method for Structural Analysis of Dextrans. J. Am. Chem. Soc.. 76(17):4435-4441. https://doi.org/10.1021/ja01646a046
2.
Dimler RJ, Wolff IA, Sloan JW, Rist CE. 1955. Interpretation of Periodate Oxidation Data on Degraded Dextran. J. Am. Chem. Soc.. 77(24):6568-6573. https://doi.org/10.1021/ja01629a044
3.
Van Cleve JW, Schaefer WC, Rist CE. 1956. The Structure of NRRL B-512 Dextran. Methylation Studies2. J. Am. Chem. Soc.. 78(17):4435-4438. https://doi.org/10.1021/ja01598a064
4.
Lindberg B, Svensson S, Sjövall J, Zaidi NA. 1968. Structural Studies on Dextran from Leuconostoc mesenteroides NRRL B-512.. Acta Chem. Scand.. 221907-1912. https://doi.org/10.3891/acta.chem.scand.22-1907
5.
Larm O, Lindberg B, Svensson S. 1971. Studies on the length of the side chains of the dextran elaborated by Leuconostoc mesenteroides NRRL B-512. Carbohydrate Research. 20(1):39-48. https://doi.org/10.1016/s0008-6215(00)84947-2
6.
Bovey FA. 1959. Enzymatic polymerization. I. Molecular weight and branching during the formation of dextran. J. Polym. Sci.. 35(128):167-182. https://doi.org/10.1002/pol.1959.1203512813
7.
Senti FR, Hellman NN, Ludwig NH, Babcock GE, Tobin R, Glass CA, Lamberts BL. 1955. Viscosity, sedimentation, and light-scattering properties of fraction of an acid-hydrolyzed dextran. J. Polym. Sci.. 17(86):527-546. https://doi.org/10.1002/pol.1955.120178605
8.
Supplier's data.
9.
Katchalsky A. 1964. Polyelectrolytes and Their Biological Interactions. Biophysical Journal. 4(1):9-41. https://doi.org/10.1016/s0006-3495(64)86924-1
10.
Allen P. 1959. Techiques of Polymer Characterization. Butterworths Scientific Publications.
11.
Granath KA, Flodin P. 1961. Makromol. Chem.. 48(1):160-171. https://doi.org/10.1002/macp.1961.020480116
12.
Granath KA. 1958. Solution properties of branched dextrans. Journal of Colloid Science. 13(4):308-328. https://doi.org/10.1016/0095-8522(58)90041-2
13.
Cramér H. 1949. On the factorization of certain probability distributions. Ark. Mat.. 1(1):61-65. https://doi.org/10.1007/bf02590468
14.
Burstein M, Scholnick HR, Morfin R. 1970. Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions. J Lipid Res. 11 (6) 583-95.
15.
Warnick GR, Benderson J, Albers JJ. 1982. Dextran sulfate-Mg2+ precipitation procedure for quantitation of high-density-lipoprotein cholesterol.. 28(6):1379-1388. https://doi.org/10.1093/clinchem/28.6.1379
16.
Wahl GM, Stern M, Stark GR. 1979. Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate.. Proceedings of the National Academy of Sciences. 76(8):3683-3687. https://doi.org/10.1073/pnas.76.8.3683
17.
Kent PW, Hichens M, Ward PFV. 1958. Displacement fractionation of deoxyribonucleoproteins by heparin and dextran sulphate. 68(4):568-572. https://doi.org/10.1042/bj0680568
18.
Vazquez D, Monro R. 1967. Effects of some inhibitors of protein synthesis on the binding of aminoacyl tRNA to ribosomal subunits. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis. 142(1):155-173. https://doi.org/10.1016/0005-2787(67)90524-2
19.
Miyazawa F, Olijnyk O, Tilley C, Tamaoki T. 1967. Interactions between dextran sulfate and Escherichia coli ribosomes. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis. 145(1):96-104. https://doi.org/10.1016/0005-2787(67)90658-2
20.
Philipson L, Kaufman M. 1964. The efficiency of ribonuclease inhibitors tested with viral ribonucleic acid as substrate. Biochimica et Biophysica Acta (BBA) - Specialized Section on Nucleic Acids and Related Subjects. 80(1):151-154. https://doi.org/10.1016/0926-6550(64)90207-5
21.
Ascione R, Arlinghaus RB. 1970. Characterization and cell-free activity of polyribosomes isolated from baby hamster kidney cells. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis. 204(2):478-488. https://doi.org/10.1016/0005-2787(70)90168-1
22.
Walter H, Johansson G. 1986. Partitioning in aqueous two-phase systems: An overview. Analytical Biochemistry. 155(2):215-242. https://doi.org/10.1016/0003-2697(86)90431-8
23.
SANDERS FK, SMITH JD. 1970. Effect of Collagen and Acid Polysaccharides on the Growth of BHK/21 Cells in Semi-solid Media. Nature. 227(5257):513-515. https://doi.org/10.1038/227513a0
24.
Sasaki S, Noguchi H. 1959. Interaction of Fibrinogen with Dextran Sulfate. 43(1):1-12. https://doi.org/10.1085/jgp.43.1.1
25.
Bengtsson S, Philipson L, Persson H, Laurent TC. 1964. The basis for the interaction between attenuated poliovirus and polyions. Virology. 24(4):617-625. https://doi.org/10.1016/0042-6822(64)90216-8
Inicie sesión para continuar.

Para seguir leyendo, inicie sesión o cree una cuenta.

¿No tiene una cuenta?