Saltar al contenido
Merck

The Role of Spinal GABAB Receptors in Cancer-Induced Bone Pain in Rats.

The journal of pain (2017-03-23)
Ya-Qun Zhou, Shu-Ping Chen, Dai-Qiang Liu, Anne Manyande, Wen Zhang, Shao-Bing Yang, Bing-Rui Xiong, Qiao-Chu Fu, Zhen-Peng Song, Heike Rittner, Da-Wei Ye, Yu-Ke Tian
RESUMEN

Cancer-induced bone pain (CIBP) remains a major challenge in advanced cancer patients because of our lack of understanding of its mechanisms. Previous studies have shown the vital role of γ-aminobutyric acid B receptors (GABABRs) in regulating nociception and various neuropathic pain models have shown diminished activity of GABABRs. However, the role of spinal GABABRs in CIBP remains largely unknown. In this study, we investigated the specific cellular mechanisms of GABABRs in the development and maintenance of CIBP in rats. Our behavioral results show that acute as well as chronic intrathecal treatment with baclofen, a GABABR agonist, significantly attenuated CIBP-induced mechanical allodynia and ambulatory pain. The expression levels of GABABRs were significantly decreased in a time-dependent manner and colocalized mostly with neurons and a minority with astrocytes and microglia. Chronic treatment with baclofen restored the expression of GABABRs and markedly inhibited the activation of cyclic adenosine monophosphate (cAMP)-dependent protein kinase and the cAMP-response element-binding protein signaling pathway. Our findings provide, to our knowledge, the first evidence that downregulation of GABABRs contribute to the development and maintenance of CIBP and restored diminished GABABRs attenuate CIBP-induced pain behaviors at least partially by inhibiting the protein kinase/cAMP-response element-binding protein signaling pathway. Therefore, spinal GABABR may become a potential therapeutic target for the management of CIBP.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Anticuerpo anti-NeuN, clon A60, clone A60, Chemicon®, from mouse
Sigma-Aldrich
R(+)-Baclofen hydrochloride, solid