Saltar al contenido
Merck
  • Peripheral pain is enhanced by insulin-like growth factor 1 through a G protein-mediated stimulation of T-type calcium channels.

Peripheral pain is enhanced by insulin-like growth factor 1 through a G protein-mediated stimulation of T-type calcium channels.

Science signaling (2014-10-09)
Yuan Zhang, Wenjuan Qin, Zhiyuan Qian, Xingjun Liu, Hua Wang, Shan Gong, Yan-Gang Sun, Terrance P Snutch, Xinghong Jiang, Jin Tao
RESUMEN

Insulin-like growth factor 1 (IGF-1) is implicated in the nociceptive (pain) sensitivity of primary afferent neurons. We found that the IGF-1 receptor (IGF-1R) functionally stimulated voltage-gated T-type Ca(2+) (CaV3) channels in mouse dorsal root ganglia (DRG) neurons through a mechanism dependent on heterotrimeric G protein (heterotrimeric guanine nucleotide-binding protein) signaling. IGF-1 increased T-type channel currents in small-diameter DRG neurons in a manner dependent on IGF-1 concentration and IGF-1R but independent of phosphatidylinositol 3-kinase (PI3K). The intracellular subunit of IGF-1R coimmunoprecipitated with Gαo. Blocking G protein signaling by the intracellular application of guanosine diphosphate (GDP)-β-S or with pertussis toxin abolished the stimulatory effects of IGF-1. Antagonists of protein kinase Cα (PKCα), but not of PKCβ, abolished the IGF-1-induced T-type channel current increase. Application of IGF-1 increased membrane abundance of PKCα, and PKCα inhibition (either pharmacologically or genetically) abolished the increase in T-type channel currents stimulated by IGF-1. IGF-1 increased action potential firing in DRG neurons and increased the sensitivity of mice to both thermal and mechanical stimuli applied to the hindpaw, both of which were attenuated by intraplantar injection of a T-type channel inhibitor. Furthermore, inhibiting IGF-1R signaling or knocking down CaV3.2 or PKCα in DRG neurons abolished the increased mechanical and thermal sensitivity that mice exhibited under conditions modeling chronic hindpaw inflammation. Together, our results showed that IGF-1 enhances T-type channel currents through the activation of IGF-1R that is coupled to a G protein-dependent PKCα pathway, thereby increasing the excitability of DRG neurons and the sensitivity to pain.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Anti-INSR antibody produced in rabbit, affinity isolated antibody