Saltar al contenido
Merck

Prolyl hydroxylase inhibitor treatment confers whole-animal hypoxia tolerance.

Acta physiologica (Oxford, England) (2007-03-31)
H Kasiganesan, V Sridharan, G Wright
RESUMEN

Recently a family of O(2)-dependent prolyl hydroxylase domain-containing enzymes (PHD) has been identified as a cellular oxygen-sensing mechanism. Reduced prolyl hydroxylase activity initiates a signalling cascade that includes the accumulation, as well as the activation, of hypoxia-inducible factor (HIF-1alpha). In turn the transcription factor HIF-1alpha, and other targets of the PHD, elicit a myriad of incompletely understood cellular responses. In these studies we have tested: (1) whether a small-molecule prolyl hydroxylase inhibitor (PHI) can effectively activate the oxygen-sensing pathway when administered systemically to mice, and (2) whether the activation of the PHD signalling pathway at the cellular level results in whole-animal hypoxic tolerance. Mice received daily injections of the PHI, ethyl-3,4 dihydroxybenzoate (EDHB, 100-250 mg kg(-1)) or vehicle. Tissue levels of HIF-1alpha and the serum levels of the HIF-inducible gene, erythropoietin (EPO), were measured to evaluate PHD-pathway activation. To evaluate hypoxic tolerance, the endurance and survival ability of these animals was tested in sublethal (8% O(2)) and lethal hypoxia (5% O(2)) respectively. Systemic treatment of mice with the PHD inhibitor, EDHB, leads to elevated levels of HIF-1alpha in liver and HIF-inducible EPO in serum, indicating activation of the cellular oxygen-sensing pathway. Animals treated with EDHB display significantly increased viability and enhanced exercise performance in hypoxia. These results demonstrate a novel pharmacological strategy to induce hypoxic tolerance and are the first to demonstrate that the activation of the PHD oxygen-sensing pathway at the cellular level is sufficient to produce a hypoxic-tolerant phenotype at the physiological level of the whole animal.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Protocatechuic acid ethyl ester, 97%