Saltar al contenido
Merck
  • Coupling efficacy and selectivity of the human mu-opioid receptor expressed as receptor-Galpha fusion proteins in Escherichia coli.

Coupling efficacy and selectivity of the human mu-opioid receptor expressed as receptor-Galpha fusion proteins in Escherichia coli.

Journal of neurochemistry (2000-08-11)
L Stanasila, W K Lim, R R Neubig, F Pattus
RESUMEN

Two constructs encoding the human micro-opioid receptor (hMOR) fused at its C terminus to either one of two Galpha subunits, Galpha(o1) (hMOR-Galpha(o1)) and Galpha(i2) (hMOR-Galpha(i2)), were expressed in Escherichia coli at levels suitable for pharmacological studies (0.4-0.5 pmol/mg). Receptors fused to Galpha(o1) or to Galpha(i2) maintained high-affinity binding of the antagonist diprenorphine. Affinities of the micro-selective agonists morphine, [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]enkephalin (DAMGO), and endomorphins as well as their potencies and intrinsic activities in stimulating guanosine 5'-O-(3-[(35)S]thiotriphosphate) ([(35)S]GTPgammaS) binding were assessed in the presence of added purified Gbetagamma subunits. Both fusion proteins displayed high-affinity agonist binding and agonist-stimulated [(35)S]GTPgammaS binding. In the presence of Gbetagamma dimers, the affinities of DAMGO and endomorphin-1 and -2 were higher at hMOR-Galpha(i2) than at hMOR-Galpha(o1), whereas morphine displayed similar affinities at the two chimeras. Potencies of the four agonists in stimulating [(35)S]GTPgammaS binding at hMOR-Galpha(o1) were similar, whereas at hMOR-Galpha(i2), endomorphin-1 and morphine were more potent than DAMGO and endomorphin-2. The intrinsic activities of the four agonists at the two fusion constructs were similar. The results confirm hMOR coupling to Galpha(o1) and Galpha(i2) and support the hypothesis of the existence of multiple receptor conformational states, depending on the nature of the G protein to which it is coupled.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Morphine sulfate salt pentahydrate