Saltar al contenido
Merck

Perfusable Biohybrid Designs for Bioprinted Skeletal Muscle Tissue.

Advanced healthcare materials (2023-03-14)
Miriam Filippi, Oncay Yasa, Jan Giachino, Reto Graf, Aiste Balciunaite, Lisa Stefani, Robert K Katzschmann
RESUMEN

Engineered, centimeter-scale skeletal muscle tissue (SMT) can mimic muscle pathophysiology to study development, disease, regeneration, drug response, and motion. Macroscale SMT requires perfusable channels to guarantee cell survival, and support elements to enable mechanical cell stimulation and uniaxial myofiber formation. Here, stable biohybrid designs of centimeter-scale SMT are realized via extrusion-based bioprinting of an optimized polymeric blend based on gelatin methacryloyl and sodium alginate, which can be accurately coprinted with other inks. A perfusable microchannel network is designed to functionally integrate with perfusable anchors for insertion into a maturation culture template. The results demonstrate that i) coprinted synthetic structures display highly coherent interfaces with the living tissue, ii) perfusable designs preserve cells from hypoxia all over the scaffold volume, iii) constructs can undergo passive mechanical tension during matrix remodeling, and iv) the constructs can be used to study the distribution of drugs. Extrusion-based multimaterial bioprinting with the inks and design realizes in vitro matured biohybrid SMT for biomedical applications.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Anti-Rabbit IgG (Fc specific)-Rhodamine antibody produced in goat, affinity isolated antibody, lyophilized powder