Saltar al contenido
Merck

Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine.

Nature biotechnology (2010-12-15)
Chun-Xiao Song, Keith E Szulwach, Ye Fu, Qing Dai, Chengqi Yi, Xuekun Li, Yujing Li, Chih-Hsin Chen, Wen Zhang, Xing Jian, Jing Wang, Li Zhang, Timothy J Looney, Baichen Zhang, Lucy A Godley, Leslie M Hicks, Bruce T Lahn, Peng Jin, Chuan He
RESUMEN

In contrast to 5-methylcytosine (5-mC), which has been studied extensively, little is known about 5-hydroxymethylcytosine (5-hmC), a recently identified epigenetic modification present in substantial amounts in certain mammalian cell types. Here we present a method for determining the genome-wide distribution of 5-hmC. We use the T4 bacteriophage β-glucosyltransferase to transfer an engineered glucose moiety containing an azide group onto the hydroxyl group of 5-hmC. The azide group can be chemically modified with biotin for detection, affinity enrichment and sequencing of 5-hmC-containing DNA fragments in mammalian genomes. Using this method, we demonstrate that 5-hmC is present in human cell lines beyond those previously recognized. We also find a gene expression level-dependent enrichment of intragenic 5-hmC in mouse cerebellum and an age-dependent acquisition of this modification in specific gene bodies linked to neurodegenerative disorders.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
T4 Beta-glucosyltransferase, recombinant, expressed in E. coli, ≥83% (SDS-PAGE)