- A Versatile Tool for the Quantification of CRISPR/Cas9-Induced Genome Editing Events in Human Hematopoietic Cell Lines and Hematopoietic Stem/Progenitor Cells.
A Versatile Tool for the Quantification of CRISPR/Cas9-Induced Genome Editing Events in Human Hematopoietic Cell Lines and Hematopoietic Stem/Progenitor Cells.
Journal of molecular biology (2018-05-12)
Rajeswari Jayavaradhan, Devin M Pillis, Punam Malik
PMID29751014
RESUMEN
The efficient site-specific DNA double-strand breaks (DSB) created by CRISPR/Cas9 has revolutionized genome engineering and has great potential for editing hematopoietic stem/progenitor cells (HSPCs). However, detailed understanding of the variables that influence choice of DNA-DSB repair (DDR) pathways by HSPC is required for therapeutic levels of editing in these clinically relevant cells. We developed a hematopoietic-reporter system that rapidly quantifies the three major DDR pathways utilized at the individual DSB created by CRISPR/Cas9-NHEJ, MMEJ, and HDR-and show its applicability in evaluating the different DDR outcomes utilized by human hematopoietic cell lines and primary human HSPC.