Accéder au contenu
Merck

On-line monitoring of continuous flow chemical synthesis using a portable, small footprint mass spectrometer.

Journal of the American Society for Mass Spectrometry (2014-08-12)
Tony W T Bristow, Andrew D Ray, Anne O'Kearney-McMullan, Louise Lim, Bryan McCullough, Alessio Zammataro
RÉSUMÉ

For on-line monitoring of chemical reactions (batch or continuous flow), mass spectrometry (MS) can provide data to (1) determine the fate of starting materials and reagents, (2) confirm the presence of the desired product, (3) identify intermediates and impurities, (4) determine steady state conditions and point of completion, and (5) speed up process optimization. Recent developments in small footprint atmospheric pressure ionization portable mass spectrometers further enable this coupling, as the mass spectrometer can be easily positioned with the reaction system to be studied. A major issue for this combination is the transfer of a sample that is representative of the reaction and also compatible with the mass spectrometer. This is particularly challenging as high concentrations of reagents and products can be encountered in organic synthesis. The application of a portable mass spectrometer for on-line characterization of flow chemical synthesis has been evaluated by coupling a Microsaic 4000 MiD to the Future Chemistry Flow Start EVO chemistry system. Specifically, the Hofmann rearrangement has been studied using the on-line mass spectrometry approach. Sample transfer from the flow reactor is achieved using a mass rate attenuator (MRA) and a sampling make-up flow from a high pressure pump. This enables the appropriate sample dilution, transfer, and preparation for electrospray ionization. The capability of this approach to provide process understanding is described using an industrial pharmaceutical process that is currently under development. The effect of a number of key experimental parameters, such as the composition of the sampling make-up flow and the dilution factor on the mass spectrometry data, is also discussed.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Acétonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acétonitrile, HPLC Plus, ≥99.9%
Sigma-Aldrich
Acide formique, reagent grade, ≥95%
Sigma-Aldrich
Acide formique, ACS reagent, ≥96%
Sigma-Aldrich
Acide formique, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Acétonitrile, ACS reagent, ≥99.5%
Sigma-Aldrich
Acétonitrile, for HPLC, for UV, ≥99.9% (GC)
Sigma-Aldrich
2-Methyltetrahydrofuran, BioRenewable, ReagentPlus®, ≥99.5%, contains 150-400 ppm BHT as stabilizer
Sigma-Aldrich
Acétonitrile, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Acide formique, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
Acide formique, ACS reagent, ≥88%
Sigma-Aldrich
Acétonitrile, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
Acétonitrile, biotech. grade, ≥99.93%
Sigma-Aldrich
Acétonitrile, anhydrous, 99.8%
Sigma-Aldrich
Acide formique, ≥95%, FCC, FG
Sigma-Aldrich
Acétonitrile, ReagentPlus®, 99%
Sigma-Aldrich
Acétonitrile, electronic grade, 99.999% trace metals basis
Sigma-Aldrich
Acétonitrile, suitable for DNA synthesis, ≥99.9% (GC)
Sigma-Aldrich
2-Methyltetrahydrofuran, BioRenewable, anhydrous, ≥99%, Inhibitor-free
Supelco
Acétonitrile, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Acétonitrile, ≥99.5% (GC)
USP
Residual Solvent Class 2 - Acetonitrile, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
2-Methyltetrahydrofuran, absolute, stored over molecular sieve
Sigma-Aldrich
Acide formique solution, BioUltra, 1.0 M in H2O
Sigma-Aldrich
2-Methyltetrahydrofuran, BioRenewable, anhydrous, ≥99.0%, contains 250 ppm BHT as stabilizer
Supelco
2-Methyltetrahydrofuran, analytical standard
Sigma-Aldrich
Acétonitrile, for preparative HPLC, ≥99.8% (GC)
Sigma-Aldrich
Acétonitrile
Supelco
Acétonitrile, analytical standard
Supelco
Acétonitrile, Pharmaceutical Secondary Standard; Certified Reference Material