Accéder au contenu
Merck

Chondrogenesis on sulfonate-coated hydrogels is regulated by their mechanical properties.

Journal of the mechanical behavior of biomedical materials (2012-11-07)
Hyuck Joon Kwon, Kazunori Yasuda
RÉSUMÉ

Many studies have demonstrated that sulfur-containing acidic groups induce chondrogenesis in vitro and in vivo. Recently, it is increasingly clear that mechanical properties of cell substrates largely influence cell differentiation. Thus, the present study investigated how mechanical properties of sulfonate-coated hydrogels influences chondrogenesis of mesenchymal stem cells (MSCs). Sulfonate-coated polyacrylamide gels (S-PAAm gels) which have the elastic modulus, E, of about 1, 15 and 150 kPa, were used in this study. MSCs cultured on the high stiffness S-PAAm gels (E=∼150 kPa) spread out with strong expression of stress fibers, while MSCs cultured on the low stiffness S-PAAm gels (E=∼1 kPa) had round shapes with less stress fibers but more cortical actins. Importantly, even in the absence of differentiation supplements, the lower stiffness S-PAAm gels led to the higher mRNA levels of chondrogenic markers such as Col2a1, Agc and Sox9 and the lower mRNA levels of an undifferentiation marker Sca1, indicating that the mechanical properties of S-PAAm gels strongly influence chondrogenesis. Blebbistatin which blocks myosin II-mediated mechanical sensing suppressed chondrogenesis induced by the low stiffness S-PAAm gels. The present study demonstrates that the soft S-PAAm gels effectively drive MSC chondrogenesis even in the absence of soluble differentiation factors and thus suggests that sulfonate-containing hydrogels with low stiffness could be a powerful tool for cartilage regeneration.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Polyacrylamide, nonionic water-soluble polymer
Sigma-Aldrich
Polyacrylamide, average Mn 150,000