Accéder au contenu
Merck

Predicting protein condensate formation using machine learning.

Cell reports (2021-02-04)
Guido van Mierlo, Jurriaan R G Jansen, Jie Wang, Ina Poser, Simon J van Heeringen, Michiel Vermeulen
RÉSUMÉ

Membraneless organelles are liquid condensates, which form through liquid-liquid phase separation. Recent advances show that phase separation is essential for cellular homeostasis by regulating basic cellular processes, including transcription and signal transduction. The reported number of proteins with the capacity to mediate protein phase separation (PPS) is continuously growing. While computational tools for predicting PPS have been developed, obtaining a proteome-wide overview of PPS probabilities has remained challenging. Here, we present a phase separation analysis and prediction (PSAP) machine-learning classifier that, based solely on the amino acid content of a training set of known PPS proteins, can determine the phase separation likelihood for each protein in a given proteome. Through comparison with PPS databases, existing predictors, and experimental evidence, we demonstrate the validity and advantages of the PSAP classifier. We anticipate that the PSAP predictor provides a useful tool for future research aimed at identifying phase separating proteins in health and disease.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anticorps monoclonal anti-α-tubuline antibody produced in mouse, clone DM1A, ascites fluid
Sigma-Aldrich
1,6-Hexanediol, 99%