Skip to Content
Merck
  • Targeting of Gamma-Glutamyl-Cysteine Ligase by miR-433 Reduces Glutathione Biosynthesis and Promotes TGF-β-Dependent Fibrogenesis.

Targeting of Gamma-Glutamyl-Cysteine Ligase by miR-433 Reduces Glutathione Biosynthesis and Promotes TGF-β-Dependent Fibrogenesis.

Antioxidants & redox signaling (2014-10-30)
Cristina Espinosa-Diez, Marta Fierro-Fernández, Francisco Sánchez-Gómez, Fernando Rodríguez-Pascual, Matilde Alique, Marta Ruiz-Ortega, Naiara Beraza, Maria L Martínez-Chantar, Carlos Fernández-Hernando, Santiago Lamas
ABSTRACT

Glutathione (GSH) is the main antioxidant against cell damage. Several pathological states course with reduced nucleophilic tone and perturbation of redox homeostasis due to changes in the 2GSH/GSSG ratio. Here, we investigated the regulation of the rate-limiting GSH biosynthetic heterodimeric enzyme γ-glutamyl-cysteine ligase (GCL) by microRNAs (miRNAs). "In silico" analysis of the 3'- untranslated regions (UTRs) of both catalytic (GCLc) and regulatory (GCLm) subunits of GCL enabled an identification of miR-433 as a strong candidate for the targeting of GCL. Transitory overexpression of miR-433 in human umbilical vein endothelial cells (HUVEC) showed a downregulation of both GCLc and GCLm in a nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-independent manner. Increases in pro-oxidant stimuli such as exposure to hydrogen peroxide or GSH depletion in endothelial and hepatic cells caused an expected increase in GCLc and GCLm protein expression and abrogation of miR-433 levels, thus supporting a cross-regulation of these pathways. Treatment of HUVEC with miR-433 resulted in reduced antioxidant and redox potentials, increased S-glutathionylation, and reduced endothelial nitric oxide synthase activation. In vivo models of renal and hepatic fibrosis were associated with transforming growth factor β1 (TGF-β1)-related reduction of GCLc and GCLm levels that were miR-433 dependent. We describe for the first time an miRNA, miR-433, capable of directly targeting GCL and promoting functional consequences in endothelial physiology and fibrotic processes by decreasing GSH levels.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Hydrogen peroxide solution, contains inhibitor, 30 wt. % in H2O, meets USP testing specifications
Sigma-Aldrich
Hydrogen peroxide solution, purum p.a., ≥35% (RT)
Sigma-Aldrich
Hydrogen peroxide solution, contains ~200 ppm acetanilide as stabilizer, 3 wt. % in H2O
Sigma-Aldrich
Hydrogen peroxide solution, contains inhibitor, 35 wt. % in H2O
Sigma-Aldrich
Hydrogen peroxide solution, contains inhibitor, 30 wt. % in H2O, ACS reagent
Sigma-Aldrich
Hydrogen peroxide solution, 50 wt. % in H2O, stabilized
Sigma-Aldrich
Hydrogen peroxide solution, 34.5-36.5%
Sigma-Aldrich
L-Buthionine-sulfoximine, ≥97% (TLC)
Sigma-Aldrich
Hydrogen peroxide solution, 30 % (w/w) in H2O, contains stabilizer
Sigma-Aldrich
L-Glutathione oxidized disodium salt, ≥98%, powder
Sigma-Aldrich
L-Glutathione oxidized disodium salt, BioReagent, suitable for cell culture
Sigma-Aldrich
N-Ethylmaleimide, BioUltra, ≥99.0% (HPLC)
Sigma-Aldrich
N-Ethylmaleimide, BioXtra, ≥98% (HPLC)
Sigma-Aldrich
N-Ethylmaleimide, crystalline, ≥98% (HPLC)
Sigma-Aldrich
L-Glutathione reduced, ≥98.0%
Sigma-Aldrich
L-Glutathione reduced, BioXtra, ≥98.0%
Sigma-Aldrich
S-Nitrosoglutathione, ≥97%
Sigma-Aldrich
L-Glutathione reduced, suitable for cell culture, BioReagent, ≥98.0%, powder