Saltar al contenido
Merck

A single GTP-binding protein regulates K+-channels coupled with dopamine, histamine and acetylcholine receptors.

Nature (1987-01-15)
K Sasaki, M Sato
RESUMEN

Recently, a GTP-binding protein sensitive to islet activating protein (IAP) has been suggested to be important in producing K+-currents when the muscarinic receptor of the atrial muscle is activated by acetylcholine (ACh). Here we confirm the blocking effects of IAP and GTP gamma S (a nonhydrolysable analogue of GTP) on the ACh-induced K+-current recorded from the ganglion cells of the sea slug Aplysia and compare their effects on histamine (HA)-induced and dopamine (DA)-induced K+-currents. Intracellular injections of IAP irreversibly and selectively block the openings of K+-channels activated by either ACh, HA, or DA without affecting the resting potential or conductance states of the membranes. Intracellular application of GTP gamma S alone caused extremely slow, irreversible opening of K+-channels; however, repetitive receptor activations significantly increase the rate of the GTP gamma S effect. These results strongly suggest that a GTP-binding protein such as Gi regulates the opening of K+-channels coupled with these receptors.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Roche
GTP-γ-S, Tetralithium salt