Skip to Content
Merck
  • Lipases from Rhizomucor miehei and Humicola lanuginosa: modification of the lid covering the active site alters enantioselectivity.

Lipases from Rhizomucor miehei and Humicola lanuginosa: modification of the lid covering the active site alters enantioselectivity.

Journal of protein chemistry (1993-12-01)
M Holmquist, M Martinelle, P Berglund, I G Clausen, S Patkar, A Svendsen, K Hult
ABSTRACT

The homologous lipases from Rhizomucor miehei and Humicola lanuginosa showed approximately the same enantioselectivity when 2-methyldecanoic acid esters were used as substrates. Both lipases preferentially hydrolyzed the S-enantiomer of 1-heptyl 2-methyldecanoate (R. miehei: ES = 8.5; H. lanuginosa: ES = 10.5), but the R-enantiomer of phenyl 2-methyldecanoate (ER = 2.9). Chemical arginine specific modification of the R. miehei lipase with 1,2-cyclohexanedione resulted in a decreased enantioselectivity (ER = 2.0), only when the phenyl ester was used as a substrate. In contrast, treatment with phenylglyoxal showed a decreased enantioselectivity (ES = 2.5) only when the heptyl ester was used as a substrate. The presence of guanidine, an arginine side chain analog, decreased the enantioselectivity with the heptyl ester (ES = 1.9) and increased the enantioselectivity with the aromatic ester (ER = 4.4) as substrates. The mutation, Glu 87 Ala, in the lid of the H. lanuginosa lipase, which might decrease the electrostatic stabilization of the open-lid conformation of the lipase, resulted in 47% activity compared to the native lipase, in a tributyrin assay. The Glu 87 Ala mutant showed an increased enantioselectivity with the heptyl ester (ES = 17.4) and a decreased enantioselectivity with the phenyl ester (ER = 2.5) as substrates, compared to native lipase. The enantioselectivities of both lipases in the esterification of 2-methyldecanoic acid with 1-heptanol were unaffected by the lid modifications.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
1,2-Cyclohexanedione, 97%