Skip to Content
Merck
  • Elongation of lifetime of the charge-separated state of ferrocene-naphthalenediimide-[60]fullerene triad via stepwise electron transfer.

Elongation of lifetime of the charge-separated state of ferrocene-naphthalenediimide-[60]fullerene triad via stepwise electron transfer.

The journal of physical chemistry. A (2011-11-25)
Mustafa Supur, Mohamed E El-Khouly, Jai Han Seok, Kwang-Yol Kay, Shunichi Fukuzumi
ABSTRACT

Photoinduced electron-transfer processes of a newly synthesized rodlike covalently linked ferrocene-naphthalenediimide-[60]fullerene (Fc-NDI-C(60)) triad in which Fc is an electron donor and NDI and C(60) are electron acceptors with similar first one-electron reduction potentials have been studied in benzonitrile. In the examined Fc-NDI-C(60) triad, NDI with high molar absorptivity is considered to be the chromophore unit for photoexcitation. Although the free-energy calculations verify that photoinduced charge-separation processes via singlet- and triplet-excited states of NDI are feasible, transient absorption spectra observed upon femtosecond laser excitation of NDI at 390 nm revealed fast and efficient electron transfer from Fc to the singlet-excited state of NDI ((1)NDI*) to produce Fc(+)-NDI(•-)-C(60). Interestingly, this initial charge-separated state is followed by a stepwise electron transfer yielding Fc(+)-NDI-C(60)(•-). As a result of this sequential electron-transfer process, the lifetime of the charge-separated state (τ(CS)) is elongated to 935 ps, while Fc(+)-NDI(•-) has a lifetime of only 11 ps.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Benzonitrile, ReagentPlus®, 99%